Numerical analysis of flow resistance characteristics in an inclined rod bundle channel

2020 ◽  
Vol 122 ◽  
pp. 103247
Author(s):  
Yinxing Zhang ◽  
Puzhen Gao ◽  
Xiaoqiang He ◽  
Chong Chen ◽  
Qiang Wang ◽  
...  
1999 ◽  
Vol 123 (3) ◽  
pp. 315-318 ◽  
Author(s):  
Keiji Sasao ◽  
Mitsuru Honma ◽  
Atsuo Nishihara ◽  
Takayuki Atarashi

A numerical method for simulating impinging air flow and heat transfer in plate-fin type heat sinks has been developed. In this method, all the fins of an individual heat sink and the air between them are replaced with a single, uniform element having an appropriate flow resistance and thermal conductivity. With this element, fine calculation meshes adapted to the shape of the actual heat sink are not needed, so the size of the calculation mesh is much smaller than that of conventional methods.


1997 ◽  
Vol 6 (1) ◽  
pp. 096369359700600
Author(s):  
Naoto Ikegawa ◽  
Hiroyuki Hamada ◽  
Zenichiro Maekawa

In order to analyze flow behavior of resin in the system with porous medium such as fibrous reinforcement for Structural Resin Transfer Molding (SRTM), equivalent viscosity according to a concept of homogenization method was introduced as an index of flow resistance. Numerical analysis using finite element method (FEM) was performed to clarify the void formation mechanism.


1986 ◽  
Vol 60 (5) ◽  
pp. 369-374 ◽  
Author(s):  
A. V. Zhukov ◽  
A. P. Sorokin ◽  
P. A. Titov ◽  
P. A. Ushakov

Author(s):  
Tatsuya Higuchi ◽  
Akimaro Kawahara ◽  
Michio Sadatomi ◽  
Hiroyuki Kudo

Single- and two-phase diversion cross-flows arising from the pressure difference between tight lattice subchannels are our concern in this study. In order to obtain a correlation of the diversion cross-flow, we conducted adiabatic experiments using a vertical multiple-channel with two subchannels simplifying the triangle tight lattice rod bundle for air-water flows at room temperature and atmospheric pressure. In the experiments, data were obtained on the axial variations in the pressure difference between the subchannels, the ratio of flow rate in one subchannel to the whole channel, the void fraction in each subchannel for slug-churn and annular flows in two-phase flow case. These data were analyzed by use of a lateral momentum equation based on a two-fluid model to determine both the cross-flow resistance coefficient between liquid phase and channel wall and the gas-liquid interfacial friction coefficient. The resulting coefficients have been correlated in a way similar to that developed for square lattice subchannel case by Kano et al. (2002); the cross-flow resistance coefficient data can be well correlated with a ratio of the lateral velocity due to the cross-flow to the axial one irrespective of single- and two-phase flows; the interfacial friction coefficient data were well correlated with a Reynolds number, which is based on the relative velocity between gas and liquid cross-flows as the characteristic velocity.


Sign in / Sign up

Export Citation Format

Share Document