fast reactors
Recently Published Documents


TOTAL DOCUMENTS

1111
(FIVE YEARS 172)

H-INDEX

24
(FIVE YEARS 5)

2022 ◽  
Vol 8 ◽  
pp. 2
Author(s):  
Andrei A. Andrianov ◽  
Olga N. Andrianova ◽  
Ilya S. Kuptsov ◽  
Leonid I. Svetlichny ◽  
Tatyana V. Utianskaya

The paper presents the results of a case study on evaluating performance and sustainability metrics for Russian nuclear energy deployment scenarios with thermal and sodium-cooled fast reactors in a closed nuclear fuel cycle. Ten possible scenarios are considered which differ in the shares of thermal and sodium-cooled fast reactors, including options involving the use of mixed uranium-plutonium oxide fuel in thermal reactors. The evolution of the following performance and sustainability metrics is estimated for the period from 2020 to 2100 based on the considered assumptions: annual and cumulative uranium consumption, needs for uranium enrichment capacities, fuel fabrication and reprocessing capacities, spent fuel stocks, radioactive wastes, amounts of plutonium in the nuclear fuel cycle, amounts of accumulated depleted uranium, and the levelised electricity generation cost. The results show that the sustainability of the Russian nuclear energy system can be significantly enhanced through the intensive deployment of sodium-cooled fast reactors and the transition to a closed nuclear fuel cycle. The authors have highlighted some issues for further considerations, which will lead to more rigorous conclusions regarding the preferred options for the development of the national nuclear energy system.


2021 ◽  
Vol 9 ◽  
Author(s):  
Donghao He ◽  
Tengfei Zhang ◽  
Xiaojing Liu

The combined fission matrix theory is a recently-developed hybrid neutron transport method. It features high efficiency, fidelity, and resolution whole-core transport calculation. The theory is based on the assumption that the fission matrix element ai,j is dominated by the property of the destination cell i. This assumption can be well explained in thermal reactors, and the combined fission matrix method has been validated in a series of thermal neutron system benchmarks. This work examines the feasibility of the combined fission matrix theory in fast reactors. The European Sodium Fast Reactor is used as the numerical benchmark. Compared to the Monte Carlo method, the combined fission matrix theory reports a 64 pcm keff difference and 8.3% 2D RMS error. The error is much larger than that in thermal reactors, and the correction ratio cannot significantly reduce the material discontinuity error in fast reactors. Overall, the combined fission matrix theory is more suited for thermal reactor transport calculations. Its application in fast reactors needs further developments.


Author(s):  
Marina R. Popchenko ◽  
Alexander G. Tsovyanov ◽  
Sergei M. Shinkarev ◽  
Anatoly V. Simakov ◽  
Vladimir N. Klochkov ◽  
...  

The article is devoted to the substantiation of the need to implement a special program of radiation-hygienic support of work with nitride fuel for fast neutron reactors. It is shown that at the current pace of implementation of the project direction "Breakthrough", in conditions when achievements in scientific research lead to a revision of design and technological solutions, it is possible to manage radiation and hygiene support only in a mode that provides a quick response to changes in the real production and environmental situation.


Sign in / Sign up

Export Citation Format

Share Document