Dendritic polymers based on poly(ethylene glycol) -co- poly(glycolic acid) -co- methacrylate and 2.0 G -polyamidoamine- metharylamide: Design, characterization, and in vitro degradation, and drug release properties

2012 ◽  
Vol 97 (3) ◽  
pp. 234-241 ◽  
Author(s):  
Fangfang Zhang ◽  
Shian Zhong ◽  
Xiaorun Zhou
Biomaterials ◽  
2004 ◽  
Vol 25 (2) ◽  
pp. 247-258 ◽  
Author(s):  
A.A. Deschamps ◽  
A.A. van Apeldoorn ◽  
H. Hayen ◽  
J.D. de Bruijn ◽  
U. Karst ◽  
...  

2020 ◽  
Vol 21 (19) ◽  
pp. 7312 ◽  
Author(s):  
György Babos ◽  
Joanna Rydz ◽  
Michal Kawalec ◽  
Magdalena Klim ◽  
Andrea Fodor-Kardos ◽  
...  

Dual drug-loaded nanotherapeutics can play an important role against the drug resistance and side effects of the single drugs. Doxorubicin and sorafenib were efficiently co-encapsulated by tailor-made poly([R,S]-3-hydroxybutyrate) (PHB) using an emulsion–solvent evaporation method. Subsequent poly(ethylene glycol) (PEG) conjugation onto nanoparticles was applied to make the nanocarriers stealth and to improve their drug release characteristics. Monodisperse PHB–sorafenib–doxorubicin nanoparticles had an average size of 199.3 nm, which was increased to 250.5 nm after PEGylation. The nanoparticle yield and encapsulation efficiencies of drugs decreased slightly in consequence of PEG conjugation. The drug release of the doxorubicin was beneficial, since it was liberated faster in a tumor-specific acidic environment than in blood plasma. The PEG attachment decelerated the release of both the doxorubicin and the sorafenib, however, the release of the latter drug remained still significantly faster with increased initial burst compared to doxorubicin. Nevertheless, the PEG–PHB copolymer showed more beneficial drug release kinetics in vitro in comparison with our recently developed PEGylated poly(lactic-co-glycolic acid) nanoparticles loaded with the same drugs.


2012 ◽  
Vol 1416 ◽  
Author(s):  
Christopher S. Brazel ◽  
James B. Bennett ◽  
Amanda L. Glover ◽  
Jacqueline A. Nikles ◽  
Maaike Everts ◽  
...  

ABSTRACTA thermally-activated micelle consisting of a crystallizable poly(caprolactone), PCL, core and a poly(ethylene glycol), PEG, corona was developed to contain magnetic nanoparticles and anti-cancer agent doxorubicin as well as display a targeting RGD peptide. This system has the potential to target cancer cells, deliver combination hyperthermia and chemotherapy, and offer magnetic resonance imaging contrast. The micelles self-assemble in aqueous solutions and form a crystalline core with a melting transition ranging from 40 to 50 °C, depending on the length of the PCL blocks, with dynamic light scattering showing micelle sizes typically ranging from 20 to 100 nm, depending on block lengths and added drug or nanoparticles. The micelles become unstable as they are heated above their melting point, creating a thermally-activated drug release mechanism. By adding magnetite (Fe3O4) nanoparticles into the PCL core, the micelles can be heated using an externally applied AC magnetic field to induce hyperthermia in combination with the thermally-activated drug release. The polymers and magnetic nanoparticles (MNPs) were synthesized and characterized in our laboratories. The melting transitions of the PCL micelle cores were investigated using microcalorimetry. The heating of nanoparticles and magnetomicelles was conducted using a custom-built hyperthermia coil capable of generating fields of several hundred Oersteds at frequencies ranging from 50 to 450 kHz. Heating of MNPs was maximized at high field intensities. RGD peptides were attached to the PEG corona using maleimide chemistry, and the ability of the RGD-derivatized micelles to target integrin-expressing cells was investigated using fluorescent dye PKH26 to identify the localization of micelles in cultured human kidney (293) cells in vitro. The crystallizable (and meltable) cores in these micelles were designed to overcome drug leakage common in liposome systems and release the drug on demand after a period of time for localization to integrin receptors.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 230 ◽  
Author(s):  
Xingzheng Liu ◽  
Rongrong Fan ◽  
Boting Lu ◽  
Yuan Le

Methoxy-poly(ethylene glycol)-poly(l-glutamic acid)-poly(l-phenylalanine) triblock polymers with different architecture were synthesized as drug carrier to obtain sustained and controlled release by tuning the composition. These triblock polymers were prepared by ring opening polymerization and poly(ethylene glycol) was used as an initiator. Polymerization was confirmed by 1H NMR, FT-IR and gel penetration chromatography. The polymers can self-assemble to form micelles in aqueous medium and their critical micelle concentrations values were examined. The micelles were spherical shape with size of 50–100 nm and especially can arranged in a regular manner. Sorafenib was selected as the model drug and the drug loading performance was dependent on the composition of the block copolymer. In vitro drug release indicated that the polymers can realize controlled and sustained drug release. Furthermore, in vitro cytotoxicity assay showed that the polymers were biocompatible and the drug-loaded micelles can increase toxicity towards tumor cells. Confocal fluorescence microscopy assays illustrated that the micelles can be uptaken quickly and release drug persistently to inhibit tumor cell growth.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 98
Author(s):  
Adam Kasiński ◽  
Monika Zielińska-Pisklak ◽  
Ewa Oledzka ◽  
Grzegorz Nałęcz-Jawecki ◽  
Agata Drobniewska ◽  
...  

A novel and promising hydrogel drug delivery system (DDS) capable of releasing 5‑fluorouracil (5-FU) in a prolonged and controlled manner was obtained using ε‑caprolactone‑poly(ethylene glycol) (CL-PEG) or rac‑lactide-poly(ethylene glycol) (rac‑LA-PEG) copolymers. Copolymers were synthesized via the ring-opening polymerization (ROP) process of cyclic monomers, ε‑caprolactone (CL) or rac-lactide (rac-LA), in the presence of zirconium(IV) octoate (Zr(Oct)4) and poly(ethylene glycol) 200 (PEG 200) as catalyst and initiator, respectively. Obtained triblock copolymers were characterized by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) techniques; the structure and tacticity of the macromolecules were determined. The relationship between the copolymer structure and the reaction conditions was evaluated. The optimal conditions were specified as 140 °C and 24 h. In the next step, CL-PEG and rac-LA-PEG copolymers were chemically crosslinked using hexamethylene diisocyanate (HDI). Selected hydrogels were subjected to in vitro antitumor drug release studies, and the release data were analyzed using zero-order, first-order, and Korsmeyer-Peppas mathematical models. Controlled and prolonged (up to 432 h) 5-FU release profiles were observed for all examined hydrogels with first-order or zero-order kinetics. The drug release mechanism was generally denoted as non-Fickian transport.


Sign in / Sign up

Export Citation Format

Share Document