Rheological studies on gas-laden and long glass fiber reinforced polypropylene through an inline high pressure capillary rheometer in the injection molding process

2018 ◽  
Vol 71 ◽  
pp. 27-31 ◽  
Author(s):  
Christoph Lohr ◽  
Stefan Dieterle ◽  
Andreas Menrath ◽  
Kay André Weidenmann ◽  
Peter Elsner
2018 ◽  
Vol 37 (15) ◽  
pp. 1020-1034 ◽  
Author(s):  
Christoph Lohr ◽  
Björn Beck ◽  
Frank Henning ◽  
Kay André Weidenmann ◽  
Peter Elsner

The MuCell process is a special injection molding process which utilizes supercritical gas (nitrogen) to create integral foam sandwiches. The advantages are lower weight, higher specific properties and shorter cycle times. In this study, a series of glass fiber-reinforced polyphenylene sulfide foam blanks are manufactured using the MuCell injection molding process. The different variations of the process (low-pressure also known as structural foam injection molding) and high-pressure foam injection molding (also known as “core back expansion,” “breathing mold,” “precision opening,” decompression molding) are used. The sandwich structure and mechanical properties (tensile strength, bending strength, and impact behavior) of the microcellular and glass fiber-reinforced polyphenylene sulfide foams are systematically investigated and compared to compact material. The results showed that the injection parameters (injection speed, foaming mechanism) played an important role in the relative density of microcellular polyphenylene sulfide foams and the mechanical properties. It could be shown that the specific tensile strength decreased while increasing the degree of foaming which can be explained by the increased number of cells and the resulting cell size. This leads to stress peaks which lower the mechanical properties. The Charpy impact strength shows a significant dependence on the fiber orientation. The specific bending modulus of the high-pressure foaming process, however, surpasses the values of the other two processes showing the potential of this manufacturing variation especially with regard to bending loads. Furthermore, a high dependence of the mechanical properties on the fiber orientation of the tested specimens can be found.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1569
Author(s):  
Selim Mrzljak ◽  
Alexander Delp ◽  
André Schlink ◽  
Jan-Christoph Zarges ◽  
Daniel Hülsbusch ◽  
...  

Short glass fiber reinforced plastics (SGFRP) offer superior mechanical properties compared to polymers, while still also enabling almost unlimited geometric variations of components at large-scale production. PA6-GF30 represents one of the most used SGFRP for series components, but the impact of injection molding process parameters on the fatigue properties is still insufficiently investigated. In this study, various injection molding parameter configurations were investigated on PA6-GF30. To take the significant frequency dependency into account, tension–tension fatigue tests were performed using multiple amplitude tests, considering surface temperature-adjusted frequency to limit self-heating. The frequency adjustment leads to shorter testing durations as well as up to 20% higher lifetime under fatigue loading. A higher melt temperature and volume flow rate during injection molding lead to an increase of 16% regarding fatigue life. In situ Xray microtomography analysis revealed that this result was attributed to a stronger fiber alignment with larger fiber lengths in the flow direction. Using digital volume correlation, differences of up to 100% in local strain values at the same stress level for different injection molding process parameters were identified. The results prove that the injection molding parameters have a high influence on the fatigue properties and thus offer a large optimization potential, e.g., with regard to the component design.


Sign in / Sign up

Export Citation Format

Share Document