The oldest zircons of Africa—Their U–Pb–Hf–O isotope and trace element systematics, and implications for Hadean to Archean crust–mantle evolution

2014 ◽  
Vol 241 ◽  
pp. 203-230 ◽  
Author(s):  
Armin Zeh ◽  
Richard A. Stern ◽  
Axel Gerdes
2020 ◽  
Vol 36 (4) ◽  
pp. 1274-1284
Author(s):  
WANG Jing ◽  
◽  
SU BenXun ◽  
TANG GuoQiang ◽  
GAO BingYu ◽  
...  

2005 ◽  
Vol 42 (9) ◽  
pp. 1571-1587 ◽  
Author(s):  
Michael J Dorais ◽  
Matthew Harper ◽  
Susan Larson ◽  
Hendro Nugroho ◽  
Paul Richardson ◽  
...  

New England and Maritime Canada host two major suites of Mesozoic diabase dykes. The oldest is the Coastal New England dykes that were emplaced between 225 and 230 Ma. These rocks are dominantly alkaline with trace element and isotopic compositions indicative of a high-238U/204Pb mantle (HIMU) source. The oldest of the ~200 Ma Mesozoic rift magmas is represented by the Talcott basalt of the Hartford basin and its feeder dykes. External to the basin is the compositionally equivalent Higganum dyke. The extension of the Higganum, the Onway dyke in New Hampshire, is identical in major and trace element and isotopic compositions indicating that the dyke system represented a feeder to flows of flood basalt proportions. The Talcott system rocks have some trace element similarities with arc basalts and have been interpreted as representing melts of a subduction zone modified mantle beneath the Laurentian- Gondwanan suture. Incompatible trace element ratios and Ba, Th, and U values are, however, unlike arc basalts and are more indicative of crustal contamination of the primary magma. The coastal New England magmas have oceanic island basalt signatures that are generally thought to represent plume-tail magmatism, which is antithetic to a plume-head origin for the younger eastern North America magmas. However, coastal New England rocks have the same trace element signatures as the alkaline rocks of the Loihi seamount, which represent the pre-shield stage to the voluminous tholeiitic magmatism in Hawaii.


2021 ◽  
Author(s):  
M.R. Cecil ◽  
et al.

<div>Includes sample location information, whole rock geochemical data, and individual zircon trace element, Lu-Hf isotope, and O isotope data.<br></div>


Geosciences ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 319 ◽  
Author(s):  
Tomas Næraa ◽  
Thomas F. Kokfelt ◽  
Anders Scherstén ◽  
Andreas Petersson

Ferroan granitoid intrusions are rare in the Archaean rock record, but have played a large role in the evolution of the Proterozoic crust, particular in relation to anorthosite-mangerite-charnockite-granite suites. Here we discuss the petrogenesis of the ca. 2785–2805 Ma ferroan Ilivertalik Intrusive Complex, which has many geochemical similarities to Proterozoic iron rich granitoids. We present major and trace element whole rock chemistry and combined in-situ zircon U-Pb, Hf and O isotope data. The intrusive complex divides into: (i) minor tabular units of mainly diorite-tonalite compositions, which are typically situated along contacts to the host basement and (ii) interior larger, bodies of mainly granite-granodiorite composition. Geochemically these two unites display continuous to semi-continuous trends in Haker-diagrams. Whole rock REE enrichment display increases from Yb to La, from 10–25 to 80–100 times chondrite, respectively. The diorite-tonalite samples are generally more enriched in REE compared to the granite-granodiorite samples. The complex has hafnium isotope compositions from around +1.5 to −2.5 epsilon units and δ18O compositions in the range of 6.3 to 6.6‰. The complex is interpreted to be derived from partial melting in a crustal source region during anomalously high crustal temperatures.


Sign in / Sign up

Export Citation Format

Share Document