intrusive complex
Recently Published Documents


TOTAL DOCUMENTS

384
(FIVE YEARS 93)

H-INDEX

33
(FIVE YEARS 5)

Author(s):  
Diego S. Pagano ◽  
Eliel Enriquez ◽  
Augusto Morosini ◽  
Miguel A. Galliski ◽  
María Florencia Marquez-Zavalia ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
D. Yergeau ◽  
P. Mercier-Langevin ◽  
B. Dubé ◽  
V. McNicoll ◽  
S. E. Jackson ◽  
...  

Abstract The Westwood deposit, located in the Archean Doyon-Bousquet-LaRonde mining camp in the southern Archean Abitibi greenstone belt, contains 4.5 Moz (140 metric t) of gold. The deposit is hosted in the 2699–2695 Ma submarine, tholeiitic to calc-alkaline volcanic, volcaniclastic, and intrusive rocks of the Bousquet Formation. The deposit is located near the synvolcanic (ca. 2699–2696 Ma) Mooshla Intrusive Complex that hosts the Doyon epizonal intrusion-related Au ± Cu deposit, whereas several Au-rich volcanogenic massive sulfide (VMS) deposits are present east of the Westwood deposit. The Westwood deposit consists of stratigraphically stacked, contrasting, and overprinting mineralization styles that share analogies with both the intrusion-related and VMS deposits of the camp. The ore zones form three distinct, slightly discordant to stratabound corridors that are, from north (base) to south (top), the Zone 2 Extension, the North Corridor, and the Westwood Corridor. Syn- to late-main regional deformation and upper greenschist to lower amphibolite facies regional metamorphism affect the ore zones, alteration assemblages, and host rocks. The Zone 2 Extension consists of Au ± Cu sulfide (pyrite-chalcopyrite)-quartz veins and zones of disseminated to semimassive sulfides. The ore zones are spatially associated with a series of calc-alkaline felsic sills and dikes that crosscut the mafic to intermediate, tholeiitic to transitional, lower Bousquet Formation volcanic rocks. The metamorphosed proximal alteration consists of muscovite-quartz-pyrite ± gypsum-andalusite-kyanite-pyrophyllite argillic to advanced argillic-style tabular envelope that is up to a few tens of meters thick. The North Corridor consists of auriferous semimassive to massive sulfide veins, zones of sulfide stringers, and disseminated sulfides that are hosted in intermediate volcaniclastic rocks at the base of the upper Bousquet Formation. The Westwood Corridor consists of semimassive to massive sulfide lenses, veins, zones of sulfide stringers, and disseminated sulfides that are located higher in the stratigraphic sequence, at or near the contact between calc-alkaline dacite domes and overlying calc-alkaline rhyodacite of the upper Bousquet Formation. A large, semiconformable distal alteration zone that encompasses the North Corridor is present in the footwall and vicinity of the Westwood Corridor. This metamorphosed alteration zone consists of an assemblage of biotite-Mn garnet-chlorite-carbonate ± muscovite-albite. A proximal muscovite-quartz-chlorite-pyrite argillic-style alteration assemblage is associated with both corridors. The Zone 2 Extension ore zones and associated alteration are considered synvolcanic based on crosscutting relationships and U-Pb geochronology and are interpreted as being the distal expression of an epizonal magmatic-hydrothermal system that is centered on the upper part of the synvolcanic Mooshla Intrusive Complex. The North and Westwood corridors consist of bimodal-felsic Au-rich VMS-type mineralization and alteration produced by the convective circulation of modified seawater that included a magmatic contribution from the coeval epizonal Zone 2 Extension magmatic-hydrothermal system. The Westwood Au deposit represents one of the very few documented examples of an Archean magmatic-hydrothermal system—or at least of such systems formed in a subaqueous environment. The study of the Westwood deposit resulted in a better understanding of the critical role of magmatic fluid input toward the formation of Archean epizonal intrusion-related Au ± Cu and seafloor/subseafloor Au-rich VMS-type mineralization.


2021 ◽  
Author(s):  
D. Yergeau ◽  
P. Mercier-Langevin ◽  
B. Dubé ◽  
M. Malo ◽  
A. Savoie

Abstract The Westwood deposit (4.5 Moz Au) is hosted in the 2699–2695 Ma Bousquet Formation volcanic and intrusive rocks, in the eastern part of the Blake River Group, southern Abitibi greenstone belt. The Bousquet Formation is divided in two geochemically distinct members: a mafic to intermediate, tholeiitic to transitional lower member and an intermediate to felsic, transitional to calc-alkaline upper member. The Bousquet Formation is cut by the synvolcanic (2699–2696 Ma) polyphase Mooshla Intrusive Complex, which is cogenetic with the Bousquet Formation. The deposit contains three strongly deformed (D2 flattening and stretching), steeply S-dipping mineralized corridors that are stacked from north to south: Zone 2 Extension, North Corridor, and Westwood Corridor. The North and Westwood corridors are composed of Au-rich polymetallic sulfide veins and stratabound to stratiform disseminated to massive sulfide ore zones that are spatially and genetically associated with the calcalkaline, intermediate to felsic volcanic rocks of the upper Bousquet Formation. The formation of the disseminated to semimassive ore zones is interpreted as strongly controlled by the replacement of porous volcaniclastic rocks at the contact with more impermeable massive cap rocks that helped confine the upflow of mineralizing fluids. The massive sulfide lenses are spatially associated with dacitic to rhyolitic domes and are interpreted as being formed, at least in part, on the paleoseafloor. The epizonal, sulfide-quartz vein-type ore zones of the Zone 2 Extension are associated with the injection of subvolcanic, calc-alkaline felsic sills and dikes within the lower Bousquet Formation. These subvolcanic intrusive rocks, previously interpreted as lava flows, are cogenetic and coeval with the intermediate to felsic lava flows and domes of the upper Bousquet Formation. The change from fractional crystallization to assimilation- and fractional crystallization-dominated processes and transitional to calc-alkaline magmatism is interpreted to be responsible for the development of the auriferous ore-forming system. The Westwood deposit is similar to some Phanerozoic Au ± base metal-rich magmatic-hydrothermal systems, both in terms of local volcano-plutonic architecture and inferred petrogenetic context. The complex volcanic evolution of the host sequence at Westwood, combined with its proximity to a polyphase synvolcanic intrusive complex, led to the development of one of the few known large Archean subaqueous Au-rich magmatic-hydrothermal systems.


2021 ◽  
pp. 221-251
Author(s):  
S.F. Trevino* ◽  
B. Tikoff ◽  
N. Van Buer ◽  
S.J. Wyld ◽  
H. McLachlan

ABSTRACT This field trip traverses the Sahwave and Nightingale Ranges in central Nevada, USA, and northward to Gerlach, Nevada, to the Granite, northern Fox, and Selenite Ranges. Plutonic bodies in this area include the ca. 93–89 Ma Sahwave nested intrusive suite of the Sahwave and Nightingale Ranges, the ca. 106 Ma Power Line intrusive complex of the Nightingale Range, the ca. 96 Ma plutons in the Selenite Range, and the ca. 105–102 Ma plutons of the Granite and Fox Ranges. Collectively these plutons occupy nearly 1000 km2 of bedrock exposure. Plutons of the Sahwave, Nightingale, and Selenite Ranges intrude autochthonous rocks east of the western Nevada shear zone, while plutons of the Granite and Fox Ranges intrude displaced terranes west of the western Nevada shear zone. Integrated structural, geochemical, and geochronological studies are used to better understand magmatic and deformation processes during the Early Cretaceous, correlations with Cretaceous plutons in adjacent areas of Idaho and California, and regional implications. Field-trip stops in the Sahwave and Nightingale Ranges will focus on: (1) microstructure and orientation of magmatic and solid-state fabrics of the incrementally emplaced granodiorites-granites of the Sahwave intrusive suite; and (2) newly identified dextral shear zones hosted within intrusions of both the Sahwave and Nightingale Ranges. The Sahwave intrusive suite exhibits moderate to weak magnetic fabrics determined using anisotropy of magnetic susceptibility, with magnetic foliations that strike NW-NE and magnetic lineations that plunge moderately to steeply. Microstructural analysis indicates that these fabrics formed during magmatic flow. The older Power Line intrusive complex in the Nightingale Range is cross-cut by the Sahwave suite and contains a N-S–trending solid-state foliation that reflects ductile dextral shearing. Field-trip stops in the plutons of the Gerlach region will focus on composition, texture, and emplacement ages, and key differences with the younger Sahwave suite, including lack of evidence for zoning and solid-state fabrics. The field trip will utilize StraboSpot, a digital data system for field-based geology that allows participants to investigate the relevant data projects in the study areas.


Author(s):  
Valbone Memeti ◽  
Scott R. Paterson ◽  
Roland Mundil

The initiation of pluton formation is rarely preserved as the rock record is typically overprinted by younger intruding pulses. An exception is the 80 km2 Kuna Crest lobe, which marks the initiation of the 95−85 Ma, 1100 km2 Tuolumne Intrusive Complex in the Sierra Nevada, California, USA. We present a detailed map of the lithologies and structure of the Kuna Crest lobe, associated sheeted complex and satellite plutons, and their host rocks, using chemical abrasion−isotope dilution−thermal ionization mass spectrometry and laser ablation−inductively coupled plasma−mass spectrometry U-Pb zircon geochronology, element and isotope geochemistry, and Al-in-hornblende thermobarometry to conclude the following: (a) The 94.91 ± 0.53 Ma to 92.75 ± 0.11 Ma Kuna Crest lobe and its marginal sheeted complex preserved the oldest intrusive pulses and most mantle-like compositions of the entire Tuolumne Intrusive Complex. (b) Emplacement began with magma wedging of low volume magma pulses resulting in a sheeted complex that is compositionally heterogeneous at outcrop scales, but isotopically homogeneous. (c) These early magmas established a pre-heated pathway within just a few hundreds of thousands of years that gave way to the formation of the ∼1.5 million-year-long active, compositionally more homogeneous but isotopically more heterogeneous magma mush across the Kuna Crest lobe. The host rocks and previously intruded magma were displaced largely vertically through downward flow. (d) The melt-interconnected mush zone in the lobe allowed for magma mixing and crystal-liquid separation at the emplacement level. We interpret this lobe to represent an upper- to mid-crustal, vertical magma transfer zone that likely fed shallower plutons and potentially volcanic eruptions. We propose a filter pressing mechanism driven by vertical magma transport through the lobe resulting in margin-parallel fabrics, plagioclase-rich crystal cumulates, inward draining and upward loss (of up to 40%) of interstitial melts. Some inward drained melts hybridized with later intruding Half Dome magmas at the transition to the main Tuolumne Intrusive Complex. Some of the lobe magmas, including fractionated melts, drained laterally into the strain shadow of the lobe to form the satellite plutons, further contributing to cumulate formation in the lobe. This study documents that within only a few hundreds of thousands of years, arc magma plumbing systems are capable of establishing a focused magma pathway to build up to increasingly larger magma bodies that are capable of undergoing magma differentiation and feeding shallower plutons and volcanic eruptions.


Lithos ◽  
2021 ◽  
pp. 106409
Author(s):  
Matthieu Harlaux ◽  
Kalin Kouzmanov ◽  
Stefano Gialli ◽  
Alan H. Clark ◽  
Oscar Laurent ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document