cratonic mantle
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 48)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Thomas Gernon ◽  
Stephen Jones ◽  
Sascha Brune ◽  
Thea Hincks ◽  
Anne Glerum ◽  
...  

Abstract Diamonds are erupted at Earth’s surface in volatile-rich magmas called kimberlites1,2,3. These enigmatic magmas, originating from depths exceeding 150 kilometres in Earth’s mantle1, occur in stable cratons and in pulses broadly synchronous with supercontinent cyclicity4. Whether their mobilization is driven by mantle plumes5 or mechanical weakening of cratonic lithosphere4,6 remains unclear. Here we show that most kimberlites spanning the past billion years erupted approximately 25 million years after the onset of continental fragmentation, suggesting an association with rifting processes. Our dynamic models show that physically steep lithosphere-asthenosphere boundaries formed during terminal rifting (necking) generate convective instabilities in the asthenosphere that slowly migrate many hundreds of kilometres inboard of the rift, causing destabilization of cratonic mantle keel tens of kilometres thick. Displaced lithosphere is replaced by hot, upwelling asthenosphere in the return flow, causing partial melting of carbonated mantle and variable assimilation of lithospheric material. The resulting small-volume kimberlite magmas ascend rapidly and adiabatically, exsolving amounts of carbon dioxide (CO2) that are consistent with independent constraints7. Our model reconciles diagnostic kimberlite features including association with cratons and geochemical characteristics that implicate a common asthenospheric mantle source contaminated by cratonic lithosphere8. Together, these results provide a quantitative and mechanistic link between kimberlite episodicity and supercontinent cycles via progressive disruption of cratonic keels.


2021 ◽  
Author(s):  
Wenbo Zhang ◽  
Stephen T. Johnston ◽  
Claire A. Currie

ABSTRACT The North American Cordillera is generally interpreted as a result of the long-lived, east-dipping subduction at the western margin of the North American plate. However, the east-dipping subduction seems problematic for explaining some of the geological features in the Cordillera such as large volume back-arc magmatism. Recent studies suggested that westward subduction of a now-consumed oceanic plate during the Cretaceous could explain these debated geological features. The evidence includes petrological and geochemical variations in magmatism, the presence of ophiolite that indicates tectonic sutures between the Cordillera and Craton, and seismic tomography images showing high-velocity bodies within the underlying convecting mantle that are interpreted as slab remnants from the westward subduction. Here we use 2-D upper mantle-scale numerical models to investigate the dynamics associated with westward subduction and Cordillera-Craton collision. The models demonstrate the controls on slab breakoff (remnant) following collision including: (1) oceanic and continental mantle lithosphere strength, (2) variations in density (eclogitization of continental lower crust and cratonic mantle lithosphere density), and (3) convergence rate. Our preferred model has a relatively weak mantle lithosphere, eclogitization of the lower continental crust, cratonic mantle lithosphere density of 3250 kg/m3, and a convergence rate of 5 cm/yr. It shows that collision and slab breakoff result in an ∼2 km increase in surface elevation of the Cordilleran region west of the suture as the dense oceanic plate detaches. The surface also shows a foreland geometry that extends >1000 km east of the suture with ∼4 km of subsidence relative to the adjacent Cordillera.


2021 ◽  
pp. SP513-2021-84
Author(s):  
Sebastian Tappe ◽  
Azhar M. Shaikh ◽  
Allan H. Wilson ◽  
Andreas Stracke

AbstractOrangeites are a significant source of diamonds, yet ambiguity surrounds their status among groups of mantle-derived potassic rocks. This study reports mineralogical and geochemical data for a ca. 140 Ma orangeite dyke swarm that intersects the Bushveld Complex on the Kaapvaal craton in South Africa. The dykes comprise distinctive petrographic varieties that are linked principally by olivine fractionation, with the most evolved members containing minor amounts of primary carbonate, sanidine and andradite garnet in the groundmass. Although abundant groundmass phlogopite and clinopyroxene have compositions that are similar to those of cratonic lamproites, these phases show notable Ti-depletion, which we consider a hallmark feature of type orangeites from the Kaapvaal craton. Ti-depletion is also characteristic for the bulk rock compositions and is associated with strongly depleted Th-U-Nb-Ta contents at high Cs-Rb-Ba-K concentrations. The resultant high LILE/HFSE ratios of orangeites suggest that mantle source enrichment occurred by metasomatic processes in the proximity of ancient subduction zones.The Bushveld-intersecting orangeite dykes have strongly enriched Sr-Nd-Hf isotopic compositions (initial 87Sr/86Sr = 0.70701-0.70741; εNd = −10.6 to −5.8; εHf = −14.4 to −2.5), similar to those of other orangeites from across South Africa. Combined with the strong Ti-Nb-Ta depletion, this ubiquitous isotopic feature points to the involvement of ancient metasomatized mantle lithosphere in the origin of Kaapvaal craton orangeites, where K-rich metasomes imparted a ‘fossil’ subduction geochemical signature. Previous geochronology studies identified ancient K-enrichment events within the Kaapvaal cratonic mantle lithosphere, possibly associated with collisional tectonics during the 1.2-1.1 Ga Namaqua-Natal orogeny of the Rodinia supercontinent cycle. It therefore seems permissible that the cratonic mantle root was preconditioned for ultrapotassic magma production by tectonomagmatic events that occurred along convergent plate margins during the Proterozoic. However, reactivation of the K-rich metasomes had to await establishment of an extensional tectonic regime, such as that during the Mesozoic breakup of Gondwana, which was accompanied by widespread (1000 × 750 km) small-volume orangeite volcanism between 200 and 110 Ma.Although similarities exist between orangeites and lamproites, these and other potassic rocks are sufficiently distinct in their compositions such that different magma formation processes must be considered. In addition to new investigations of the geodynamic triggers of K-rich ultramafic magmatism, future research should more stringently evaluate the relative roles of redox effects and volatile components such as H2O-CO2-F in the petrogeneses of these potentially diamondiferous alkaline rocks.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5440652


2021 ◽  
Author(s):  
Charitra Jain ◽  
Antoine Rozel ◽  
Emily Chin ◽  
Jeroen van Hunen

<div>Geophysical, geochemical, and geological investigations have attributed the stable behaviour of Earth's continents to the presence of strong and viscous cratons underlying the continental crust. The cratons are underlain by thick and cold mantle keels, which are composed of melt-depleted and low density peridotite residues [1]. Progressive melt extraction increases the magnesium number Mg# in the residual peridotite, thereby making the roots of cratons chemically buoyant [2, 3] and counteracting their negative thermal buoyancy. Recent global models have shown the production of Archean continental crust by two-step mantle differentiation, however this primordial crust gets recycled and no stable continents form [4]. This points to the missing ingredient of cratonic lithosphere in these models, which could act as a stable basement for the crustal material to accumulate on and may also help with the transition of global regime from "vertical tectonics'' to "horizontal tectonics''. Based on the bulk FeO and MgO content of the residual peridotites, it has been proposed that cratonic mantle formed by hot shallow melting with mantle potential temperature, which was higher by 200-300 °C than present-day [5]. We introduce Fe-Mg partitioning between mantle peridotite and melt to track the Mg# variation through melting, and parametrise craton formation using the corresponding P-T formation conditions. Using self-consistent global convection models, we show the dynamic formation of cratons as a result of naturally occurring lateral compression and thickening of the lithosphere, which has been suggested by geochemical and petrological data. To allow for the material to compact and thicken, but prevent it from collapsing under its own weight, a combination of lithospheric strength, plastic yielding, dehydration strengthening, and depletion-induced density reduction of the depleted mantle material is necessary.</div><div> </div><div> [1] Boyd, F. R. High-and low-temperature garnet peridotite xenoliths and their possible relation to the lithosphere- asthenosphere boundary beneath Africa. In Nixon, P. H. (ed.) <em>Mantle Xenolith</em>, 403–412 (John Wiley & Sons Ltd., 1987).</div><div>[2] Jordan, T. H. Mineralogies, densities and seismic velocities of garnet lherzolites and their geophysical implications. In <em>The Mantle Sample: Inclusion in Kimberlites and Other Volcanics</em>, 1–14 (American Geophysical Union, Washington, D. C., 1979).</div><div>[3] Schutt, D. L. & Lesher, C. E. Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. <em>Journal of Geophysical Research </em><strong>111</strong> (2006).</div><div>[4] Jain, C., Rozel, A. B., Tackley, P. J., Sanan, P. & Gerya, T. V. Growing primordial continental crust self-consistently in global mantle convection models. <em>Gondwana Research</em> <strong>73</strong>, 96–122 (2019).</div><div>[5] Lee, C.-T. A. & Chin, E. J. Calculating melting temperatures and pressures of peridotite protoliths: Implications for the origin of cratonic mantle. <em>Earth and Planetary Science Letters</em> <strong>403</strong>, 273–286 (2014)</div>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Emma L. Tomlinson ◽  
Balz S. Kamber

AbstractPeridotites from the thick roots of Archaean cratons are known for their compositional diversity, whose origin remains debated. We report thermodynamic modelling results for reactions between peridotite and ascending mantle melts. Reaction between highly magnesian melt (komatiite) and peridotite leads to orthopyroxene crystallisation, yielding silica-rich harzburgite. By contrast, shallow basalt-peridotite reaction leads to olivine enrichment, producing magnesium-rich dunites that cannot be generated by simple melting. Komatiite is spatially and temporally associated with basalt within Archaean terranes indicating that modest-degree melting co-existed with advanced melting. We envisage a relatively cool mantle that experienced episodic hot upwellings, the two settings could have coexisted if roots of nascent cratons became locally strongly extended. Alternatively, deep refractory silica-rich residues could have been detached from shallower dunitic lithosphere prior to cratonic amalgamation. Regardless, the distinct Archaean melting-reaction environments collectively produced skewed and multi-modal olivine distributions in the cratonic lithosphere and bimodal mafic-ultramafic volcanism at surface.


Sign in / Sign up

Export Citation Format

Share Document