The diversity of sources of late Archean granites reflects a transition from plume-dominated to plate tectonics in the Superior Province, Canada

2022 ◽  
Vol 370 ◽  
pp. 106525
Author(s):  
Lukáš Ackerman ◽  
Jiří Žák ◽  
Václav Kachlík ◽  
Martin Svojtka ◽  
Filip Tomek ◽  
...  
2020 ◽  
Author(s):  
Graham Hill ◽  
Eric Roots ◽  
Ben Frieman ◽  
Jim Craven ◽  
Richard Smith ◽  
...  

<p>The nature of lithospheric evolution and style of the driving ‘tectonic’ processes occurring during Archean continent construction remain enigmatic. A significantly hotter thermal regime characterised the early Earth and was pervasive for much of the Archean. This resulted in construction of continents that were significantly weaker and unable to support the thick crustal sequences and topographies common to modern orogens. Gravitational collapse of these early continents may have occurred when deeper material became less dense by heating or partial melting and created a density contrast beyond the crustal competence and/or due to post-orogenic relaxation. Such a collapse could result in large scale horizontal spreading within the middle to lower crust and the development of lateral crustal flow along flat-lying shear zones producing fluid-deposited graphitic and metallic sulphide films at these depths, which, if preserved would produce broad scale quasi-horizontal mid-lower crustal low resistivity anomalies. Here we show 3D magnetotelluric resistivity models of the Archean Superior Province of Canada that reveal these types of anomalies that could represent lateral crustal flow in the middle to lower crust. Further, the magnetotelluric model shows narrow sub-vertical zones of low resistivity extending from the mid crust to the near surface, interpreted to represent remnant fluid pathways that potentially formed prior to gravitational collapse. These sub-vertical low resistivity features correlate spatially with crustal-scale deformation zones that potentially are host to hydrothermal ore deposits and abundant metasomatic mineral assemblages. The well preserved record of primary crustal amalgamation within the Superior Province of Canada with both features expected of autochthonous vertical ‘drip’ tectonics (sub-vertical fluid pathways) and allochthonous horizontal plate tectonics (flat-lying lower crustal shear zones) regimes, suggests a potential transitional period of tectonic evolution might have characterised the region during the late Archean.</p>


2020 ◽  
Vol 42 (3) ◽  
pp. 271-282
Author(s):  
OLEG IVANOV

The general characteristics of planetary systems are described. Well-known heat sources of evolution are considered. A new type of heat source, variations of kinematic parameters in a dynamical system, is proposed. The inconsistency of the perovskite-post-perovskite heat model is proved. Calculations of inertia moments relative to the D boundary on the Earth are given. The 9 times difference allows us to claim that the sliding of the upper layers at the Earth's rotation speed variations emit heat by viscous friction.This heat is the basis of mantle convection and lithospheric plate tectonics.


2006 ◽  
Vol 17 (7) ◽  
pp. 209-253
Author(s):  
Pavel M. Goryainov ◽  
G. Yu. Ivanyuk ◽  
A. O. Kalashnikov
Keyword(s):  

2016 ◽  
Author(s):  
Alec Bodzin ◽  
◽  
David Anastasio ◽  
Raghida Sharif ◽  
Scott Rutzmoser

2016 ◽  
Author(s):  
Richard A. Schweickert ◽  
◽  
Raymond V. Ingersoll ◽  
Stephan A. Graham
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document