Development of metal cutting process accompanied by a localized compressive hydrostatic stress field formation: Examination by molecular dynamics simulation

2014 ◽  
Vol 38 (2) ◽  
pp. 371-378 ◽  
Author(s):  
Keito Uezaki ◽  
Jun Shimizu ◽  
Libo Zhou
2012 ◽  
Vol 523-524 ◽  
pp. 167-172 ◽  
Author(s):  
Keito Uezaki ◽  
Jun Shimizu ◽  
Li Bo Zhou ◽  
Teppei Onuki ◽  
Hirotaka Ojima

Improving machined surface integrity is one of the important issues in the precision machining. This study aims to develop a cutting tool, which enables to generate a local hydrostatic pressure field in the vicinity of the cutting point to suppress the extra plastic flow in the workpiece, because it is known that materials including metals never cause plastic flow and fracture no matter how much greater hydrostatic pressure field is given. In this paper, a simple cutting tool with planer jig is proposed and a molecular dynamics simulation of cutting is performed as the first step. As a result, it is confirmed that the reduction of the plastic deformation, mainly in the burr formation become remarkable with the proposed model due to the suppression of extra side plastic flow, and relatively high-hydrostatic stress field is formed in the vicinity of cutting point. However, it is also observed that relatively many dislocations are generated beneath the cutting groove.


2019 ◽  
Vol 2019.27 (0) ◽  
pp. 714
Author(s):  
Haruna SAKURAI ◽  
Naohiko YANO ◽  
Jun SHIMIZU ◽  
Libo ZHOU ◽  
Teppei ONUKI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document