Stochastic response of articulated leg platform in probability domain

2008 ◽  
Vol 23 (2-3) ◽  
pp. 227-236 ◽  
Author(s):  
Deepak Kumar ◽  
T.K. Datta
Sadhana ◽  
2006 ◽  
Vol 31 (4) ◽  
pp. 325-342
Author(s):  
Deepak Kumar ◽  
T. K. Datta

Author(s):  
Khangamlung Kamei ◽  
Muhammad A. Khan

AbstractFatigue damage is a concern in the engineering applications particularly for metal structures. The design phase of a structure considers factors that can prevent or delay the fatigue and fracture failures and increase its working life. This paper compiled some of the past efforts to share the modelling challenges. It provides an overview on the existing research complexities in the area of fatigue and fracture modelling. This paper reviews the previous research work under five prominent challenges: assessing fatigue damage accurately under the vibration-based loads, complications in fatigue and fracture life estimation, intricacy in fatigue crack propagation, quantification of cracks and stochastic response of structure under thermal environment. In the conclusion, the authors have suggested new directions of work that still require comprehensive research efforts to bridge the existing gap in the current academic domain due to the highlighted challenges.


2021 ◽  
Vol 42 (5) ◽  
pp. 641-648
Author(s):  
Shichao Ma ◽  
Xin Ning ◽  
Liang Wang ◽  
Wantao Jia ◽  
Wei Xu

AbstractIt is well-known that practical vibro-impact systems are often influenced by random perturbations and external excitation forces, making it challenging to carry out the research of this category of complex systems with non-smooth characteristics. To address this problem, by adequately utilizing the stochastic response analysis approach and performing the stochastic response for the considered non-smooth system with the external excitation force and white noise excitation, a modified conducting process has proposed. Taking the multiple nonlinear parameters, the non-smooth parameters, and the external excitation frequency into consideration, the steady-state stochastic P-bifurcation phenomena of an elastic impact oscillator are discussed. It can be found that the system parameters can make the system stability topology change. The effectiveness of the proposed method is verified and demonstrated by the Monte Carlo (MC) simulation. Consequently, the conclusions show that the process can be applied to stochastic non-autonomous and non-smooth systems.


2020 ◽  
Vol 20 (05) ◽  
pp. 2050062
Author(s):  
Huiying Hu ◽  
Lincong Chen

As a new type of seismic resisting device, the self-centering system is attractive due to its excellent re-centering capability, but research on such a system under random seismic loadings is quite limited. In this paper, the stochastic response of a single-degree-of-freedom (SDOF) self-centering system driven by a white noise process is investigated. For this purpose, the original self-centering system is first approximated by an auxiliary nonlinear system, in which the equivalent damping and stiffness coefficients related to the amplitude envelope of the response are determined by a harmonic balance procedure. Subsequently, by the method of stochastic averaging, the amplitude envelope of the response of the equivalent nonlinear stochastic system is approximated by a Markovian process. The associated Fokker–Plank–Kolmogorov (FPK) equation is used to derive the stationary probability density function (PDF) of the amplitude envelope in a closed form. The effects of energy dissipation coefficient and yield displacement on the response of system are examined using the stationary PDF solution. Moreover, Monte Carlo simulations (MCS) are used for ascertaining the accuracy of the analytical solutions.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Qinghai Zhao ◽  
Xiaokai Chen ◽  
Zheng-Dong Ma ◽  
Yi Lin

A mathematical framework is developed which integrates the reliability concept into topology optimization to solve reliability-based topology optimization (RBTO) problems under uncertainty. Two typical methodologies have been presented and implemented, including the performance measure approach (PMA) and the sequential optimization and reliability assessment (SORA). To enhance the computational efficiency of reliability analysis, stochastic response surface method (SRSM) is applied to approximate the true limit state function with respect to the normalized random variables, combined with the reasonable design of experiments generated by sparse grid design, which was proven to be an effective and special discretization technique. The uncertainties such as material property and external loads are considered on three numerical examples: a cantilever beam, a loaded knee structure, and a heat conduction problem. Monte-Carlo simulations are also performed to verify the accuracy of the failure probabilities computed by the proposed approach. Based on the results, it is demonstrated that application of SRSM with SGD can produce an efficient reliability analysis in RBTO which enables a more reliable design than that obtained by DTO. It is also found that, under identical accuracy, SORA is superior to PMA in view of computational efficiency.


Sign in / Sign up

Export Citation Format

Share Document