stationary probability density function
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 31 (16) ◽  
Author(s):  
Wenting Zhang ◽  
Wei Xu ◽  
Qin Guo ◽  
Hongxia Zhang

The birhythmic oscillation is of great significance in biology and engineering, and this paper presents a bifurcation analysis in a time-delayed birhythmic oscillator containing fractional derivative and Lévy noise. The numerical method is used to explore the influence of various parameters on the bifurcation of the birhythmic system, and the role of fractional derivative and Lévy noise in inducing or inhibiting birhythmicity in a time-delayed birhythmic biological system is examined in this work. First, we use a numerical method to calculate the fractional derivative, which has a fast calculation speed. Then the McCulloch algorithm is employed to generate Lévy random numbers. Finally, the stationary probability density function graph of the amplitude is obtained by Monte Carlo simulation. The results show that the fractional damping and Lévy noise can effectively control the characteristics of the birhythmic oscillator, and the change of the parameters (except the skewness parameter) can cause the system bifurcation. In addition, this article further discusses the interaction of fractional derivative and time delay in a birhythmic system with Lévy noise, proving that adjusting parameters of time delay can lead to abundant bifurcations. Our research may help to further explore the bifurcation phenomenon of birhythmic biological system, and has a practical significance.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Bo Li ◽  
Kai Hu ◽  
Guoguang Jin ◽  
Yanyan Song ◽  
Gen Ge

Considering the curvature nonlinearity and longitudinal inertia nonlinearity caused by geometrical deformations, a slender inextensible cantilever beam model under transverse pedestal motion in the form of Gaussian colored noise excitation was studied. Present stochastic averaging methods cannot solve the equations of random excited oscillators that included both inertia nonlinearity and curvature nonlinearity. In order to solve this kind of equations, a modified stochastic averaging method was proposed. This method can simplify the equation to an Itô differential equation about amplitude and energy. Based on the Itô differential equation, the stationary probability density function (PDF) of the amplitude and energy and the joint PDF of the displacement and velocity were studied. The effectiveness of the proposed method was verified by numerical simulation.


2020 ◽  
Vol 20 (05) ◽  
pp. 2050062
Author(s):  
Huiying Hu ◽  
Lincong Chen

As a new type of seismic resisting device, the self-centering system is attractive due to its excellent re-centering capability, but research on such a system under random seismic loadings is quite limited. In this paper, the stochastic response of a single-degree-of-freedom (SDOF) self-centering system driven by a white noise process is investigated. For this purpose, the original self-centering system is first approximated by an auxiliary nonlinear system, in which the equivalent damping and stiffness coefficients related to the amplitude envelope of the response are determined by a harmonic balance procedure. Subsequently, by the method of stochastic averaging, the amplitude envelope of the response of the equivalent nonlinear stochastic system is approximated by a Markovian process. The associated Fokker–Plank–Kolmogorov (FPK) equation is used to derive the stationary probability density function (PDF) of the amplitude envelope in a closed form. The effects of energy dissipation coefficient and yield displacement on the response of system are examined using the stationary PDF solution. Moreover, Monte Carlo simulations (MCS) are used for ascertaining the accuracy of the analytical solutions.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050013
Author(s):  
Yuanli Sun ◽  
Lijuan Ning

In this manuscript, an investigation on bifurcations induced by two delays and additive and multiplicative colored noises in a self-sustained birhythmic oscillator is presented, both theoretically and numerically, which serves for the purpose of unveiling extremely complicated nonlinear dynamics in various spheres, especially in biology. By utilizing the multiple scale expansion approach and stochastic averaging technique, the stationary probability density function (SPDF) of the amplitude is obtained for discussing stochastic bifurcations. With time delays, intensities and correlation time of noises regarded as bifurcation parameters, rich bifurcation arises. In the case of additive noise, it is identified that the bifurcations induced by the two delays are entirely distinct and longer velocity delay can accelerate the conversion rate of excited enzyme molecules. A novel type of P-bifurcation emerges from the process in the case of multiplicative colored noise, with the SPDF qualitatively changing between crater-like and bimodal distributions, while it cannot be generated when the multiplicative colored noise is coupled with additive noise. The feasibility and effectiveness of analytical methods are confirmed by the good consistency between theoretical and numerical solutions. This investigation may have practical applications in governing dynamical behaviors of birhythmic systems.


2019 ◽  
Vol 26 (7-8) ◽  
pp. 532-539
Author(s):  
Lei Xia ◽  
Ronghua Huan ◽  
Weiqiu Zhu ◽  
Chenxuan Zhu

The operation of dynamic systems is often accompanied by abrupt and random changes in their configurations, which will dramatically change the stationary probability density function of their response. In this article, an effective procedure is proposed to reshape the stationary probability density function of nonlinear stochastic systems against abrupt changes. Based on the Markov jump theory, such a system is formulated as a continuous system with discrete Markov jump parameters. The limiting averaging principle is then applied to suppress the rapidly varying Markov jump process to generate a probability-weighted system. Then, the approximate expression of the stationary probability density function of the system is obtained, based on which the reshaping control law can be designed, which has two parts: (i) the first part (conservative part) is designed to make the reshaped system and the undisturbed system have the same Hamiltonian; (ii) the second (dissipative part) is designed so that the stationary probability density function of the reshaped system is the same as that of undisturbed system. The proposed law is exactly analytical and no online measurement is required. The application and effectiveness of the proposed procedure are demonstrated by using an example of three degrees-of-freedom nonlinear stochastic system subjected to abrupt changes.


2018 ◽  
Vol 28 (10) ◽  
pp. 1850127 ◽  
Author(s):  
Lijuan Ning ◽  
Zhidan Ma

We consider bifurcation regulations under the effects of correlated noise and delay self-control feedback excitation in a birhythmic model. Firstly, the term of delay self-control feedback is transferred into state variables without delay by harmonic approximation. Secondly, FPK equation and stationary probability density function (SPDF) for amplitude can be theoretically mapped with stochastic averaging method. Thirdly, the intriguing effects on bifurcation regulations in a birhythmic model induced by delay and correlated noise are observed, which suggest the violent dependence of bifurcation in this model on delay and correlated noise. Particularly, the inner limit cycle (LC) is always standing due to noise. Lastly, the validity of analytical results was confirmed by Monte Carlo simulation for the dynamics.


2018 ◽  
Vol 28 (04) ◽  
pp. 1850048 ◽  
Author(s):  
Qin Guo ◽  
Zhongkui Sun ◽  
Wei Xu

This paper presents a study on stochastic bifurcations in a time-delayed birhythmic oscillator possessing a bistability mode with coexistence of two stable limit cycles in the deterministic case. Relying on the approximate methods, the stationary probability density function (PDF) of amplitude and joint PDF of displacement and velocity have been exhibited to characterize the qualitative properties of the system. The investigations indicate that the birhythmic region increases firstly and then decreases when time delay is monotonically varied. Further, system parameters and noise level can induce the appearance of stochastic P-bifurcation. Similar bifurcations can be induced by changing the strength of time delay and delayed feedbacks in displacement and velocity. Interestingly, joint PDF will reflect a more complex regime. And the role of the strength of the delayed velocity feedback on stochastic bifurcation is sensitive to the value of time delay. Numerical simulations are carried out for prototype models, which show basic agreement with our theoretical predictions.


2017 ◽  
Vol 27 (13) ◽  
pp. 1750202 ◽  
Author(s):  
Zhidan Ma ◽  
Lijuan Ning

We aim to investigate bifurcation behaviors in a stochastic birhythmic van der Pol (BVDP) system subjected to delay self-control feedback. First, the harmonic approximation is adopted to drive the delay self-control feedback to state variables without delay. Then, Fokker–Planck–Kolmogorov (FPK) equation and stationary probability density function (SPDF) for amplitude are obtained by applying stochastic averaging method. Finally, dynamical scenarios of the change of delay self-control feedback as well as noise that markedly influence bifurcation performance are observed. It is found that: the big feedback strength and delay will suppress the large amplitude limit cycle (LC) while the relatively big noise strength facilitates the large amplitude LC, which imply the proposed regulation strategies are feasible. Interestingly enough, the inner LC is never destroyed due to noise. Furthermore, the validity of analytical results was verified by Monte Carlo simulation of the dynamics.


2016 ◽  
Vol 26 (06) ◽  
pp. 1650102 ◽  
Author(s):  
Jin Fu ◽  
Zhongkui Sun ◽  
Yuzhu Xiao ◽  
Wei Xu

In this paper, noise-induced and delay-induced bifurcations in a bistable Duffing–van der Pol (DVP) oscillator under time delay and joint noises are discussed theoretically and numerically. Based on the qualitative changes of the plane phase, delay-induced bifurcations are investigated in the deterministic case. However, in the stochastic case, the response of the system is a stochastic non-Markovian process owing to the existence of noise and time delay. Then, methods have been employed to derive the stationary probability density function (PDF) of the amplitude of the response. Accordingly, stochastic P-bifurcations can be observed with the variations in the qualitative behavior of the stationary PDF for amplitude. Furthermore, results from both theoretical analyses and numerical simulations best demonstrate the appearance of noise-induced and delay-induced bifurcations, which are in good agreement.


Sign in / Sign up

Export Citation Format

Share Document