First and second order lagrangian conditional moment closure method in turbulent nonpremixed flames

2015 ◽  
Vol 35 (2) ◽  
pp. 1175-1182 ◽  
Author(s):  
Karam Han ◽  
Kang Y. Huh
Author(s):  
Tomoaki Watanabe ◽  
Hiroki Yasuhara ◽  
Yasuhiko Sakai ◽  
Takashi Kubo ◽  
Kouji Nagata ◽  
...  

It is important in engineering to elucidate the mechanism of a chemical reaction in turbulent flow. But there are still few studies on reacting turbulent flow in a liquid phase. In this study, the two-dimensional liquid jet with the second-order reaction (A+B←R) is investigated. The concentrations of the species R and the conserved scalar (which is the concentration of other species independent of the above chemical reaction) are measured simultaneously by the optical fiber probe based on light absorbtion spectroscopic method. The concentrations of species A and B are obtained from the conserved scalar theory. Regarding the velocity field, the streamwise velocity is measured by the hot-film anemometer. The moment closure methods are often used for the prediction of turbulent flow. But it is difficult to apply it to the reacting turbulent flow because of the high non-linearity of the reaction rate terms. It is commonly known that the values of concentrations depend strongly on the mixture fraction (which is a conserved scalar) defined as the normalized concentration of the species which is independent of reaction. Hence, Conditional moment closure (CMC) methods are useful for the prediction of the turbulent flow with chemical reactions. In this study, conditional scalar statistics are investigated by using the conditional moment closure methods and experimental data. It is shown that the conditional averages of concentration of reactant and product species approach the equilibrium limit (which correspond to the limiting case of the fast chemical reaction) in the downstream direction and the value of the conditional scalar (mixture fraction) dissipation decreases and its distribution varies in the downstream direction and comes to show the local minimum value near the point η = ξS (which is the stoichiometric value of the mixture fraction).


Author(s):  
Carlos Velez ◽  
Scott Martin ◽  
Aleksander Jemcov ◽  
Subith Vasu

The tabulated premixed conditional moment closure (T-PCMC) method has been shown to provide the capability to model turbulent, premixed methane flames with detailed chemistry and reasonable runtimes in Reynolds-averaged Navier–Stokes (RANS) environment by Martin et al. (2013, “Modeling an Enclosed, Turbulent Reacting Methane Jet With the Premixed Conditional Moment Closure Method,” ASME Paper No. GT2013-95092). Here, the premixed conditional moment closure (PCMC) method is extended to large eddy simulation (LES). The new model is validated with the turbulent, enclosed reacting methane backward facing step data from El Banhawy et al. (1983, “Premixed, Turbulent Combustion of a Sudden-Expansion Flow,” Combust. Flame, 50, pp. 153–165). The experimental data have a rectangular test section at atmospheric pressure and temperature with an inlet velocity of 10.5 m/s and an equivalence ratio of 0.9 for two different step heights. Contours of major species, velocity, and temperature are provided. The T-PCMC model falls into the class of table lookup turbulent combustion models in which the combustion model is solved offline over a range of conditions and stored in a table that is accessed by the computational fluid dynamic (CFD) code using three controlling variables: the reaction progress variable (RPV), variance, and local scalar dissipation rate. The local scalar dissipation rate is used to account for the affects of the small-scale mixing on the reaction rates. A presumed shape beta function probability density function (PDF) is used to account for the effects of subgrid scale (SGS) turbulence on the reactions. SGS models are incorporated for the scalar dissipation and variance. The open source CFD code OpenFOAM is used with the compressible Smagorinsky LES model. Velocity, temperature, and major species are compared to the experimental data. Once validated, this low “runtime” CFD turbulent combustion model will have great utility for designing the next generation of lean premixed (LPM) gas turbine combustors.


Sign in / Sign up

Export Citation Format

Share Document