scholarly journals Material Flow Cost Accounting Extended to the Supply Chain – Challenges, Benefits and Links to Life Cycle Engineering

Procedia CIRP ◽  
2015 ◽  
Vol 29 ◽  
pp. 486-491 ◽  
Author(s):  
Martina Prox
2021 ◽  
Author(s):  
Majid Dekamin ◽  
Kamran Kheiralipour ◽  
Reza Keshavarz Afshar

Abstract The agricultural sector in the world is facing social expectations to reduce energy consumption and environmental impacts; and at the same producing enough food and fiber for the growing world population. The purpose of the present research to determine the economic, energy consumption, and environmental indicators in coriander seed production using novel approach of material flow cost accounting (MFCA) along with classical life cycle assessment (LCA). The positive output and negative energy were 25485 and 6742 MJ ha−1, respectively. Energy efficiency, net energy gain, specific energy, and energy productivity indicators were calculated as 0.6, -11944 MJ ha−1, 17.4 MJ kg−1, and 0.06 kg MJ−1, respectively. The average production cost was calculated as 588 $ ha−1 (334 $ ton−1) whereas gross income was 1267 $ ha−1 (720 $ ton−1). The value of negative products in coriander production was estimated as 239 $ ha−1 (136 $ ton−1). Seed shedding at harvest and water loss due to inefficient irrigation system were found to be the major negative products (economic and energy) in the system that can enhance the system productivity upon improvement. The values of benefit costs ratio and economic productivity were 1.74 and 3 kg $−1, respectively. The acidification potential (58.2 kg SO2 eq ton−1), global warming potential (510 kg CO2 eq ton−1), photochemical oxidation potential (0.13 kg C2H4 eq ton−1), and eutrophication potential (23 kg PO4 −3 eq ton−1) indicators were evaluated. The hotspots in point of economic (labor and seed shedding), energy use (nitrogen fertilizer and machinery) and energy loss (seed shedding), and environment (diesel fuel consumption) were determined which can be used to optimize coriander production through decreasing the material and energy consumption in the field. The results showed that MFCA combined with LCA is a powerful tool in identifying hotspots in crop production systems and can be used in developing more sustainable systems as well as in developing sustainability models.


Sign in / Sign up

Export Citation Format

Share Document