system productivity
Recently Published Documents


TOTAL DOCUMENTS

316
(FIVE YEARS 141)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 28 (1) ◽  
pp. 15-35
Author(s):  
Natan Teles Cruz ◽  
Daniel Lucas Santos Dias ◽  
Daniela Deitos Fries ◽  
Renata Rodrigues Jardim ◽  
Braulio Maia de Lana Sousa ◽  
...  

This review aimed to approach the dynamics of pasture degradation, relating its causes and forms of recovery and/or renewal. Despite being based on extensive systems, Brazilian agriculture faces serious problems related to pasture degradation. The reduction in forage productivity directly affects the production system, having negative impacts on the economy and the ecosystem. Factors such as the choice of forage species, grazing management and the use of fire are the main factors responsible for the degradation of pastures in Brazil, causing an environmental and productive imbalance. However, it is possible to stop the progress of degradation and resume system productivity using pre-defined techniques in accordance with the objective of the production system. Furthermore, pasture recovery techniques are efficient for the resumption of productivity, and environmental protection, by helping to reduce greenhouse gases. Nevertheless, more research is needed to prove and consolidate pasture recovery techniques in the environmental, economic, and social scope.


2022 ◽  
Vol 14 (1) ◽  
pp. 543
Author(s):  
Mukhtar Ahmad Faiz ◽  
Ram Swaroop Bana ◽  
Anil Kumar Choudhary ◽  
Alison M. Laing ◽  
Ruchi Bansal ◽  
...  

Pearl millet-based cropping systems with intensive tillage operations prior to sowing have limited sustainable productivity in the low-irrigation conditions of semi-arid farming ecologies, such as those in the north Indian plains. The adoption of improved management practices such as zero tillage with residue retention (ZTR) and diversification with the inclusion of summer pulse crops has the potential to improve cropping system sustainability. Therefore, an experiment was designed to compare two improved management practices, zero tillage (ZT) and ZTR, to conventional tillage (CT), across three pearl millet-based cropping systems: pearl millet–chickpea (PM–CP), PM–CP–mungbean (MB), and PM–CP–forage pearl millet in a two-year experiment. Experimental treatments were compared in terms of pearl millet productivity, mineral biofortification, and greenhouse gas emissions. Results showed a significant increase in pearl millet yield attributes, grain and stover productivity, nutrient uptake, and micronutrient biofortification in the PM–CP–MB cropping system under ZTR relative to other treatment combinations. On-farm evaluation at different locations also showed that the intensification of PM–CP system using summer crops enhanced pearl millet productivity across diverse tillage systems. Overall, zero tillage practices combined with diversified pearl millet-based cropping systems are likely to be management practices, which farmers can use to sustainably maintain or increase cropping system productivity in the various semi-arid areas of the world.


Author(s):  
A.I. Toure ◽  
G.C. Zougou Tovignon ◽  
F.C. Ngansop Nono ◽  
Ngwarh Perpetua Tuncha ◽  
D. Obame Mba ◽  
...  

Background: The study of the zootechnical performance of Tilapia cabrae and Oreochromis schwebischi was carried out at the Mbolet fish farm in Lambaréné in Gabon in order to evaluate the growth and reproductive performance of these two species. Methods: For this purpose, 226 fish (113 of T. cabrae with an average weight of 30.55±9.5 g and 113 O. schwebischi with an average weight of 20.64±10.5 g), were distributed in four 6 m2 tanks with two replicates per species for the growing phase which lasted 60 days. For the reproductive phase, 42 selected mature fish, including 6 males and 36 females of each species, were placed in six 2 m2 ponds with three replicates per species for 78 days. Result: The survival rate, the number of reproductions per species and the absolute, relative and system productivities were determined. It was found that the average weight gain, daily individual growth and specific growth rate were significantly (p less than 0.05) higher in T. cabrae, 48.1±5.51 g, 0.8±0.092 g/day and 1.57±0.066% g/day respectively, than in O. schwebischi, 27.11±9.23 g, 0.45±0.15 g/day and 1.38±0.051% g/day respectively. At the end of reproduction, the absolute productivity of T. cabrae (234.75±24.71 larvae/female/egg-laying) was significantly higher (p less than 0.05) than that of O. schwebichi (104.68±46.64 larvae/female/laying). System productivity was significantly higher (p less than 0.05) in O. schwebichi (11.34±2.29 larvae/m2/day) compared to that of T. cabrae (4.12±1.73 larvae/m2/day). Thus, on a fish farm, the use of these species may be possible.


2021 ◽  
Author(s):  
Majid Dekamin ◽  
Kamran Kheiralipour ◽  
Reza Keshavarz Afshar

Abstract The agricultural sector in the world is facing social expectations to reduce energy consumption and environmental impacts; and at the same producing enough food and fiber for the growing world population. The purpose of the present research to determine the economic, energy consumption, and environmental indicators in coriander seed production using novel approach of material flow cost accounting (MFCA) along with classical life cycle assessment (LCA). The positive output and negative energy were 25485 and 6742 MJ ha−1, respectively. Energy efficiency, net energy gain, specific energy, and energy productivity indicators were calculated as 0.6, -11944 MJ ha−1, 17.4 MJ kg−1, and 0.06 kg MJ−1, respectively. The average production cost was calculated as 588 $ ha−1 (334 $ ton−1) whereas gross income was 1267 $ ha−1 (720 $ ton−1). The value of negative products in coriander production was estimated as 239 $ ha−1 (136 $ ton−1). Seed shedding at harvest and water loss due to inefficient irrigation system were found to be the major negative products (economic and energy) in the system that can enhance the system productivity upon improvement. The values of benefit costs ratio and economic productivity were 1.74 and 3 kg $−1, respectively. The acidification potential (58.2 kg SO2 eq ton−1), global warming potential (510 kg CO2 eq ton−1), photochemical oxidation potential (0.13 kg C2H4 eq ton−1), and eutrophication potential (23 kg PO4 −3 eq ton−1) indicators were evaluated. The hotspots in point of economic (labor and seed shedding), energy use (nitrogen fertilizer and machinery) and energy loss (seed shedding), and environment (diesel fuel consumption) were determined which can be used to optimize coriander production through decreasing the material and energy consumption in the field. The results showed that MFCA combined with LCA is a powerful tool in identifying hotspots in crop production systems and can be used in developing more sustainable systems as well as in developing sustainability models.


2021 ◽  
Vol 39 (4) ◽  
pp. 432-443
Author(s):  
Vitor AS Lino ◽  
Francisco Bezerra Neto ◽  
Jailma SS Lima ◽  
Elizangela C Santos ◽  
Renato LC Nunes ◽  
...  

ABSTRACT One of the biggest challenges in the intercropping system of two crops is to obtain the optimal dose of green manure and the adequate population density of the crops. So, the objective of this work was to evaluate the performance of beet and arugula intercropping, influenced by green manuring with Merremia aegyptia and Calotropis procera and arugula population densities in two cultivation years, in semi-arid environment. The experimental design used was in randomized complete blocks, with the treatments arranged in a 4 x 4 factorial scheme, with 4 repetitions. The first factor of this scheme consisted of equitable amounts of M. aegyptia and C. procera biomass (20, 35, 50 and 65 t ha-1 on a dry basis) and the second factor, by arugula population densities (40, 60, 80 and 100% of the recommended density for single cropping, corresponding to 400, 600, 800 and 1,000 thousand arugula plants ha-1). The production and its components were evaluated on beet and arugula. In addition to these characteristics, the following agro-economic indicators were also determined for each treatment: system productivity index (SPI), land equivalent coefficient (LEC) and monetary equivalent ratio (MER). The greatest agro-economic advantages of the beet with arugula intercropping were achieved with a system productivity index (SPI) of 53.47 t ha-1, land equivalent coefficient (LEC) of 0.84 and a monetary equivalent ratio (MER) of 1.56, respectively, combining 65 t ha-1 of M. aegyptia and C. procera biomass with the arugula population density of 1,000 thousand plants ha-1. The maximum optimized commercial productivity of beetroots in the system intercropped with arugula was 23.20 t ha-1 using 65 t ha-1 of M. aegyptia and C. procera and in the arugula population density of 1,000 thousand plants ha-1, while the maximum arugula productivity intercropped with beet was 9.65 t ha-1, in the same combination of green manures amount and arugula population density.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ke Xu ◽  
Qiang Chai ◽  
Falong Hu ◽  
Zhilong Fan ◽  
Wen Yin

AbstractIntercropping increases the grain yield to feed the ever-growing population in the world by cultivating two crop species on the same area of land. It has been proven that N-fertilizer postponed topdressing can boost the productivity of cereal/legume intercropping. However, whether the application of this technology to cereal/cereal intercropping can still increase grain yield is unclear. A field experiment was conducted from 2018 to 2020 in the arid region of northwestern China to investigate the accumulation and distribution of dry matter and yield performance of wheat/maize intercropping in response to N-fertilizer postponed topdressing application. There were three N application treatments (referred as N1, N2, N3) for maize and the total amount were all 360 kg N ha−1. N fertilizer were applied at four time, i.e. prior to sowing, at jointing stage, at pre-tasseling stage, and at 15 days post-silking stage, respectively. The N3 treatment was traditionally used for maize production and allocations subjected to these four stages were 2:3:4:1. The N1 and N2 were postponed topdressing treatments which allocations were 2:1:4:3 and 2:2:4:2, respectively. The results showed that the postponed topdressing N fertilizer treatments boosted the maximum average crop growth rate (CGR) of wheat/maize intercropping. The N1 and N2 treatments increased the average maximum CGR by 32.9% and 16.4% during the co-growth period, respectively, and the second average maximum CGR was increased by 29.8% and 12.6% during the maize recovery growth stage, respectively, compared with the N3 treatment. The N1 treatment was superior to other treatments, since it increased the CGR of intercropped wheat by 44.7% during the co-growth period and accelerated the CGR of intercropped maize by 29.8% after the wheat had been harvested. This treatment also increased the biomass and grain yield of intercropping by 8.6% and 33.7%, respectively, compared with the current N management practice. This yield gain was primarily attributable to the higher total translocation of dry matter. The N1 treatment increased the transfer amount of intercropped wheat by 28.4% from leaf and by 51.6% from stem, as well as increased the intercropped maize by 49.0% of leaf, 36.6% of stem, and 103.6% of husk, compared to N3 treatment, respectively. Integrated the N fertilizer postponed topdressing to the wheat/maize intercropping system have a promotion effect on increasing the translocation of dry matter to grain in vegetative organs. Therefore, the harvest index of intercropped wheat and maize with N1 was 5.9% and 5.3% greater than that of N3, respectively. This demonstrated that optimizing the management of N fertilizer can increase the grain yield from wheat/maize intercropping via the promotion of accumulation and translocation of dry matter.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2547
Author(s):  
Mohammad Mojibur Rahman ◽  
Shihab Uddin ◽  
Mohammad Mofizur Rahman Jahangir ◽  
Zakaria M. Solaiman ◽  
Saud Alamri ◽  
...  

Integrated Plant Nutrient System (IPNS) is practiced worldwide to maintain soil quality. Two field experiments were conducted in 2019 and 2020 in acidic and charland soils to assess the impact of different manures, viz., poultry manure (PM), vermicompost (VC), compost (OF), rice husk biochar (RHB), poultry manure biochar (PMB)-based IPNS, and dolomite over control on productivity and nitrogen use efficiency (NUE) of the Mustard-Boro-Transplanted Aman and Maize-Jute-Transplanted Aman cropping patterns, and on soil properties. The experiments were laid out in a randomized complete block design with four replications. The results showed that IPNS treatments significantly improved soil aggregate properties and total nitrogen in acidic soil, and bulk density in charland soil. In both years, IPNS treatments increased system productivity from 55.4 to 82.8% in acidic soil and from 43.3 to 115.4% in charland soil over that of control. IPNS and dolomite treatments increased nitrogen uptake from 35.5 to 105.7% over that of control and NUE in both soils in 2019 and 2020. PMB- and OF-based INPS treatments exhibited superior performances in both soils, and the impact was more prominent in 2020. Therefore, PMB- and OF-based IPNS can be recommended for maximizing system productivity and NUE with concurrent improvement of physicochemical properties of acidic and charland soils.


2021 ◽  
Author(s):  
Esso - Hanam ATAKE

Abstract Background: 21 of the 30 countries with a high tuberculosis (TB) burden are in Sub-Saharan Africa (SSA). SSA is also home to 74% of all HIV-positive TB patients reported worldwide in 2014. This paper analyses the productivity changes of TB programs and decompose this productivity down into technological change and technical efficiency. Method: this study was carried out in 16 SSA countries where TB is highly endemic and covers the period 2009-2016. The data is taken from the annual reports of global TB Program. We used the Hicks-Moorsteen index to compute and decompose total factor productivity (TFP), and the β-convergence and σ-convergence tests to check for convergence patterns among SSA countries. Results: The largest increase in the TFP (35.7%) in 2016 with respect to the base year corresponds to the cutbacks in inputs (9.1%) and a positive change in outputs (0.9%). We found that technological change has been the main driver of the TFP growth, and that increasing technical efficiency may be the first objective in efforts to improve the TFP of TB programs. Our findings support the hypothesis of convergence among SSA countries in the fight against TB. Moreover, corruption was considered as one of the most important determinants of tuberculosis control in SSA countries.Conclusion: the findings suggest that improving the technical efficiency of TB programs mainly calls for better resource allocation, capacity building in governance and management of programs, improved training of the health providers and stronger prevention policies. An efficient use of funds will arguably reduce the number of tuberculosis cases and TB burden. The Global Fund must closely monitor all the grants in its portfolio and respond decisively and urgently to any instances of corruption.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2320
Author(s):  
Raj K. Jat ◽  
Deepak Bijarniya ◽  
Suresh K. Kakraliya ◽  
Tek B. Sapkota ◽  
Manish Kakraliya ◽  
...  

Intensive tillage-based production systems coupled with inefficient fertilizer management practices have led to increased production costs, sub-optimal productivity, and significant environmental externalities. Conservation agriculture (CA) is being increasingly advocated as a management strategy to overcome these issues but precision nutrient management under the CA-based maize-wheat system is rarely studied. Two year’s (2014–2015 and 2015–2016) research was conducted at the research farm of BISA, Pusa, Bihar, India to develop precision nutrient management practices for CA-based management in the maize-wheat system. Seven treatment combinations involving (i) tillage (conventional tillage; CT & permanent beds; PB) and (ii) nutrient management rates, application methods (farmers’ fertilizer practices; FFP, state recommended dose of fertilizer; SR and precision nutrient management using Nutrient Expert tool; NE and GreenSeeker; (GS), applied using two methods; broadcasting (B) and drilling (D)) were investigated for multiple parameters. The results showed that NE, NE+GS, and SR-based nutrient management tactics with drilling improved crop yields, nutrient-use efficiency (NUE), and economic profitability relative to NE-broadcasting, SR broadcasting, and FFP broadcasting methods. Maize-wheat system productivity and net returns under NE+GS-drilling on PB were significantly higher by 31.2%, 49.7% compared to FFP-broadcasting method, respectively. Total global warming potential (GWP) was lower in the PB-based maize-wheat system coupled with precision nutrient management compared to CT-based maize-wheat system with FFP. Higher (15.2%) carbon sustainability index (CSI) was recorded with NE-drilling compared to FFP-broadcasting method. Results suggests that PB-based maize-wheat system together with precision nutrient management approaches (NE+GS+drilling) can significantly increase crop yields, NUE, and profitability while reducing the emission of greenhouse gases (GHGs) from maize-wheat systems in eastern Indo Gangetic Plains (IGP).


Sign in / Sign up

Export Citation Format

Share Document