scholarly journals Supporting Discrete Event Simulation with 3D Laser Scanning and Value Stream Mapping: Benefits and Drawbacks

Procedia CIRP ◽  
2018 ◽  
Vol 72 ◽  
pp. 1536-1541 ◽  
Author(s):  
Daniel Nåfors ◽  
Maja Bärring ◽  
Maxime Estienne ◽  
Björn Johansson ◽  
Mats Wahlström
2017 ◽  
Vol 17 (3) ◽  
pp. 294-323 ◽  
Author(s):  
Zeeshan Aziz ◽  
Rana Muhammad Qasim ◽  
Sahawneh Wajdi

Purpose The purpose of this paper is to investigate the integration of discrete event simulation (DES) and value stream mapping (VSM) to enhance the productivity of road surfacing operations by achieving high production rates and minimum road closure times. Highway infrastructure is one of the most valuable assets owned by the public sector. The success of national and local economies as well as quality of life of the general public depend on the efficient operations of highways. Ensuring smooth traffic operations requires maintenance and improvements of the highest standard. Design/methodology/approach Research approach involved the use of primary data collected from direct observation, interviews, review of archival records and productivity databases. Based on this, process maps and value stream maps were developed which were subsequently used to produce discrete event simulation models for the exploration of different optimisation scenarios. Findings This research highlights the synergistic relationship between VSM and DES in driving innovation in construction processes. Identified factors that affect roadworks process productivity include machine, manpower, material, information, environment and method-related factors. A DES model is presented to optimise the process and increase the production rates. A hybrid DES-VSM approach ensures an integrated approach to process optimisation. Research limitations/implications This study is an application of hybrid version of previously published DES-VSM framework in the manufacturing sector. The present study has extended and tested its applicability within road surfacing operations. The different what-if scenarios presented in this paper might not be applicable to other parts of the world owing to various constraints. The study has focused on addressing the waste production inherent in pavement laying process. Even though external variables could possibly influence pavement process, those were ignored to allow for in-depth focus on the process under consideration. Practical implications Road users are one of the most important stakeholders that will benefit from the positive implications of this study. Private resurfacing companies and transport departments can optimise their overall process and style of working by comparing their end-to-end process and work plans with the ones mentioned in this paper. It will boost the productivity of equipment like planners, pavers and other machines used for resurfacing operations. Originality/value Existing approaches to process modelling such as VSM and process diagrams are constrained by their effectiveness in the analysis of dynamic and complex processes. This study presents a DES-based approach to validate targeted improvements of the current state of road surfacing processes and in exploration of different optimisation scenarios.


Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 816 ◽  
Author(s):  
Emad Alzubi ◽  
Anas M. Atieh ◽  
Khaleel Abu Shgair ◽  
John Damiani ◽  
Sima Sunna ◽  
...  

This paper studies manufacturing processes in a wooden furniture manufacturing company. The company suffers from long manufacturing lead times and an unbalanced production line. To identify sources of waste and delay value stream mapping (VSM) and a discrete event simulation model is implemented. VSM is used to visualize and analyze the major processes of the company and provide quantifiable KPIs; the manufacturing lead-time and then Overall Equipment Effectiveness (OEE) settings. A discrete event simulation model is then built to analyze the company on a wider scale and provide the data required to identify bottlenecks. Building on the data gathered from the production lines and the simulation model, two-bottleneck detection methods are used, the utilization method, and the waiting time method. Then based on the comparison of the two methods a third bottleneck detection is utilized; the scenario-based method, to identify the primary and secondary bottlenecks. After the bottlenecks are identified, changes are then evaluated using the simulation model and radar charts were built based on the improved simulation model, which evaluates the effect of changes in the utilization and OEE results. This work managed to neutralize the effect of one of the main bottlenecks and minimize the effect of the other. The manufacturing utilization was increased by 15.8% for the main bottleneck resources followed by 2.4% for the second one. However, it is hard to convince the traditional administration of this small size manufacturing plant to adopt a completely revolutionizing, costly, and risky (at such level) lean manufacturing approach. This paper studies and provides a much lower in cost and verified scheme of enhancement.


Sign in / Sign up

Export Citation Format

Share Document