scholarly journals Simulating an Impact of Road Network Improvements on the Performance of Transportation Systems under Critical Load: Agent-based Approach

2016 ◽  
Vol 101 ◽  
pp. 253-261 ◽  
Author(s):  
Dmitrii Milevich ◽  
Valentin Melnikov ◽  
Vladislav Karbovskii ◽  
Valeria Krzhizhanovskaya
2021 ◽  
Vol 13 (6) ◽  
pp. 3172
Author(s):  
Suchat Tachaudomdach ◽  
Auttawit Upayokin ◽  
Nopadon Kronprasert ◽  
Kriangkrai Arunotayanun

Amidst sudden and unprecedented increases in the severity and frequency of climate-change-induced natural disasters, building critical infrastructure resilience has become a prominent policy issue globally for reducing disaster risks. Sustainable measures and procedures to strengthen preparedness, response, and recovery of infrastructures are urgently needed, but the standard for measuring such resilient elements has yet to be consensually developed. This study was undertaken with an aim to quantitatively measure transportation infrastructure robustness, a proactive dimension of resilience capacities and capabilities to withstand disasters; in this case, floods. A four-stage analytical framework was empirically implemented: 1) specifying the system and disturbance (i.e., road network and flood risks in Chiang Mai, Thailand), 2) illustrating the system response using the damaged area as a function of floodwater levels and protection measures, 3) determining recovery thresholds based on land use and system functionality, and 4) quantifying robustness through the application of edge- and node-betweenness centrality models. Various quantifiable indicators of transportation robustness can be revealed; not only flood-damaged areas commonly considered in flood-risk management and spatial planning, but also the numbers of affected traffic links, nodes, and cars are highly valuable for transportation planning in achieving sustainable flood-resilient transportation systems.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-25
Author(s):  
Bin Lu ◽  
Xiaoying Gan ◽  
Haiming Jin ◽  
Luoyi Fu ◽  
Xinbing Wang ◽  
...  

Urban traffic flow forecasting is a critical issue in intelligent transportation systems. Due to the complexity and uncertainty of urban road conditions, how to capture the dynamic spatiotemporal correlation and make accurate predictions is very challenging. In most of existing works, urban road network is often modeled as a fixed graph based on local proximity. However, such modeling is not sufficient to describe the dynamics of the road network and capture the global contextual information. In this paper, we consider constructing the road network as a dynamic weighted graph through attention mechanism. Furthermore, we propose to seek both spatial neighbors and semantic neighbors to make more connections between road nodes. We propose a novel Spatiotemporal Adaptive Gated Graph Convolution Network ( STAG-GCN ) to predict traffic conditions for several time steps ahead. STAG-GCN mainly consists of two major components: (1) multivariate self-attention Temporal Convolution Network ( TCN ) is utilized to capture local and long-range temporal dependencies across recent, daily-periodic and weekly-periodic observations; (2) mix-hop AG-GCN extracts selective spatial and semantic dependencies within multi-layer stacking through adaptive graph gating mechanism and mix-hop propagation mechanism. The output of different components are weighted fused to generate the final prediction results. Extensive experiments on two real-world large scale urban traffic dataset have verified the effectiveness, and the multi-step forecasting performance of our proposed models outperforms the state-of-the-art baselines.


Author(s):  
Lokukaluge P. Perera

A general framework to support the navigation side of autonomous ships is discussed in this study. That consists of various maritime technologies to achieve the required level of ocean autonomy. Decision-making processes in autonomous vessels will play an important role under such ocean autonomy, therefore the same technologies should consist of adequate system intelligence. Each onboard application in autonomous vessels may require localized decision-making modules, therefore that will introduce a distributed intelligence type strategy. Hence, future ships will be agent-based systems with distributed intelligence throughout vessels. The main core of this agent should consist of deep learning type technology that has presented promising results in other transportation systems, i.e. self-driving cars. Deep learning can capture helmsman behavior, therefore that type system intelligence can be used to navigate autonomous vessels. Furthermore, an additional decision support layer should also be developed to facilitate deep learning type technology including situation awareness and collision avoidance. Ship collision avoidance is regulated by the Convention on the International Regulations for Preventing Collisions at Sea, 1972 (COLREGs) under open sea areas. Hence, a general overview of the COLREGs and its implementation challenges, i.e. regulatory failures and violations, under autonomous ships are also discussed with the possible solutions as the main contribution of this study. Furthermore, additional considerations, i.e. performance standards with the applicable limits of liability, terms, expectations and conditions, towards evaluating ship behavior as an agent-based system on collision avoidance situations are also illustrated in this study.


2017 ◽  
Vol 46 (1) ◽  
pp. 84-102 ◽  
Author(s):  
Ruihong Huang

To measure job accessibility, person-based approaches have the advantage to capture all accessibility components: land use, transportation system, individual’s mobility and travel preference, as well as individual’s space and time constraints. This makes person-based approaches more favorable than traditional aggregated approaches in recent years. However, person-based accessibility measures require detailed individual trip data which are very difficult and expensive to acquire, especially at large scales. In addition, traveling by public transportation is a highly time sensitive activity, which can hardly be handled by traditional accessibility measures. This paper presents an agent-based model for simulating individual work trips in hoping to provide an alternative or supplementary solution to person-based accessibility study. In the model, population is simulated as three levels of agents: census tracts, households, and individual workers. And job opportunities (businesses) are simulated as employer agents. Census tract agents have the ability to generate household and worker agents based on their demographic profiles and a road network. Worker agents are the most active agents that can search jobs and find the best paths for commuting. Employer agents can estimate the number of transit-dependent employees, hire workers, and update vacancies. A case study is conducted in the Milwaukee metropolitan area in Wisconsin. Several person-based accessibility measures are computed based on simulated trips, which disclose low accessibility inner city neighborhoods well covered by a transit network.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
M. Benalla ◽  
B. Achchab ◽  
H. Hrimech

Providing accurate real-time traffic information is an inherent problem for intelligent transportation systems (ITS). In order to improve the knowledge base of advanced driver assistance systems (ADAS), ITS are strongly concerned with data fusion techniques of all kinds of sensors deployed over the traffic network. Driver assistance is devoid of a comprehensive evidential reasoning system on contextual information, more specifically when a combination involves inside and outside sensory information of the driving environment. In this paper, we propose a novel agent-based evidential reasoning system using contextual information. Based on a series of information handling techniques, specifically, the belief functions theory and heuristic inference operations to achieve a consensus about daily driving activity in automatically inferring. That is quite different from other existing proposals, as it deals jointly with the driving behavior and the driving environment conditions. A case study including various scenarios of experiments is introduced to estimate behavioral information based on synthetic data for prediction, prescription, and policy analysis. Our experiments show promising, thought-provoking results encouraging further research.


2011 ◽  
Vol 26 (6) ◽  
pp. 77-81 ◽  
Author(s):  
Cheng Chen ◽  
Shuang Shuang Li ◽  
Bo Chen ◽  
Ding Wen

Author(s):  
Hao Wu ◽  
Lingbo Liu ◽  
Yang Yu ◽  
Zhenghong Peng ◽  
Hongzan Jiao ◽  
...  

Abstract:Commuting of residents in big city often brings tidal traffic pressure or congestions. Understanding the causes behind this phenomenon is of great significance for urban space optimization. Various spatial big data make possible the fine description of urban residents travel behaviors, and bring new approaches to related studies. The present study focuses on two aspects: one is to obtain relatively accurate features of commuting behaviors by using mobile phone data, and the other is to simulate commuting behaviors of residents through the agent-based model and inducing backward the causes of congestion. Taking the Baishazhou area of Wuhan, a local area of a mega city in China, as a case study, travel behaviors of commuters are simulated: the spatial context of the model is set up using the existing urban road network and by dividing the area into travel units; then using the mobile phone call detail records (CDR) of a month, statistics of residents' travel during the four time slots in working day mornings are acquired and then used to generated the OD matrix of travels at different time slots; and then the data are imported into the model for simulation. By the preset rules of congestion, the agent-based model can effectively simulate the traffic conditions of each traffic intersection, and can also induce backward the causes of traffic congestion using the simulation results and the OD matrix. Finally, the model is used for the evaluation of road network optimization, which shows evident effects of the optimizing measures adopted in relieving congestion, and thus also proves the value of this method in urban studies.


Sign in / Sign up

Export Citation Format

Share Document