scholarly journals High-frequency Statistical Arbitrage Strategy Based on Stationarized Order Flow Imbalance

2021 ◽  
Vol 187 ◽  
pp. 518-523
Author(s):  
Qingxue Wang ◽  
Bin Teng ◽  
Qi Hao ◽  
Yufeng Shi
2019 ◽  
Vol 12 (2) ◽  
pp. 51 ◽  
Author(s):  
Johannes Stübinger ◽  
Lucas Schneider

This paper develops a fully-fledged statistical arbitrage strategy based on a mean-reverting jump–diffusion model and applies it to high-frequency data of the S&P 500 constituents from January 1998–December 2015. In particular, the established stock selection and trading framework identifies overnight price gaps based on an advanced jump test procedure and exploits temporary market anomalies during the first minutes of a trading day. The existence of the assumed mean-reverting property is confirmed by a preliminary analysis of the S&P 500 index; this characteristic is particularly significant 120 min after market opening. In the empirical back-testing study, the strategy delivers statistically- and economically-significant returns of 51.47 percent p.a.and an annualized Sharpe ratio of 2.38 after transaction costs. We benchmarked our trading algorithm against existing quantitative strategies from the same research area and found its performance superior in a multitude of risk-return characteristics. Finally, a deep dive analysis shows that our results are consistently profitable and robust against drawdowns, even in recent years.


2021 ◽  
Vol 14 (3) ◽  
pp. 119
Author(s):  
Fabian Waldow ◽  
Matthias Schnaubelt ◽  
Christopher Krauss ◽  
Thomas Günter Fischer

In this paper, we demonstrate how a well-established machine learning-based statistical arbitrage strategy can be successfully transferred from equity to futures markets. First, we preprocess futures time series comprised of front months to render them suitable for our returns-based trading framework and compile a data set comprised of 60 futures covering nearly 10 trading years. Next, we train several machine learning models to predict whether the h-day-ahead return of each future out- or underperforms the corresponding cross-sectional median return. Finally, we enter long/short positions for the top/flop-k futures for a duration of h days and assess the financial performance of the resulting portfolio in an out-of-sample testing period. Thereby, we find the machine learning models to yield statistically significant out-of-sample break-even transaction costs of 6.3 bp—a clear challenge to the semi-strong form of market efficiency. Finally, we discuss sources of profitability and the robustness of our findings.


Sign in / Sign up

Export Citation Format

Share Document