scholarly journals Identifying Typical Urban Water Demand Patterns for a Reliable Short-term Forecasting – The Icewater Project Approach

2014 ◽  
Vol 89 ◽  
pp. 1004-1012 ◽  
Author(s):  
A. Candelieri ◽  
F. Archetti
2020 ◽  
Vol 146 (9) ◽  
pp. 05020017 ◽  
Author(s):  
Li Mu ◽  
Feifei Zheng ◽  
Ruoling Tao ◽  
Qingzhou Zhang ◽  
Zoran Kapelan

2018 ◽  
Vol 32 (14) ◽  
pp. 4527-4542 ◽  
Author(s):  
Salah L. Zubaidi ◽  
Sadik K. Gharghan ◽  
Jayne Dooley ◽  
Rafid M. Alkhaddar ◽  
Mawada Abdellatif

Author(s):  
Majid Gholami Shirkoohi ◽  
Mouna Doghri ◽  
Sophie Duchesne

Abstract The application of artificial neural network (ANN) models for short-term (15 min) urban water demand predictions is evaluated. Optimization of the ANN model's hyperparameters with a Genetic Algorithm (GA) and use of a growing window approach for training the model are also evaluated. The results are compared to those of commonly used time series models, namely the Autoregressive Integrated Moving Average (ARIMA) model and a pattern-based model. The evaluations are based on data sets from two Canadian cities, providing 15 minute water consumption records over respectively 5 years and 23 months, with a respective mean water demand of 14,560 and 887 m3/d. The GA optimized ANN model performed better than the other models, with Nash-Sutcliffe Efficiencies of 0.91 and 0.83, and Relative Root Mean Square Errors of 6 and 16% for City 1 and City 2, respectively. The results of this study indicate that the optimization of the hyperparameters of an ANN model can lead to better 15 min urban water demand predictions, which are useful for many real time control applications, such as dynamic pressure control.


2021 ◽  
Vol 1058 (1) ◽  
pp. 012066
Author(s):  
Salah L. Zubaidi ◽  
Hussein Al-Bugharbee ◽  
Yousif Raad Muhsin ◽  
Sadik Kamel Gharghan ◽  
Khalid Hashim ◽  
...  

2021 ◽  
Author(s):  
Shunyu Wu ◽  
Pingwei Zhao ◽  
Miaoshun Bai ◽  
Jingcheng Wang ◽  
Yang Lan

Sign in / Sign up

Export Citation Format

Share Document