scholarly journals Short-term water demand predictions coupling an Artificial Neural Network model and a Genetic Algorithm

Author(s):  
Majid Gholami Shirkoohi ◽  
Mouna Doghri ◽  
Sophie Duchesne

Abstract The application of artificial neural network (ANN) models for short-term (15 min) urban water demand predictions is evaluated. Optimization of the ANN model's hyperparameters with a Genetic Algorithm (GA) and use of a growing window approach for training the model are also evaluated. The results are compared to those of commonly used time series models, namely the Autoregressive Integrated Moving Average (ARIMA) model and a pattern-based model. The evaluations are based on data sets from two Canadian cities, providing 15 minute water consumption records over respectively 5 years and 23 months, with a respective mean water demand of 14,560 and 887 m3/d. The GA optimized ANN model performed better than the other models, with Nash-Sutcliffe Efficiencies of 0.91 and 0.83, and Relative Root Mean Square Errors of 6 and 16% for City 1 and City 2, respectively. The results of this study indicate that the optimization of the hyperparameters of an ANN model can lead to better 15 min urban water demand predictions, which are useful for many real time control applications, such as dynamic pressure control.

Author(s):  
Kaz Adamowski ◽  
Jan F. Adamowski ◽  
Ousmane Seidou ◽  
Bogdan Ozga-Zieliński

Abstract Weekly urban water demand forecasting using a hybrid wavelet-bootstrap-artificial neural network approach. This study developed a hybrid wavelet-bootstrap-artificial neural network (WBANN) model for weekly (one week) urban water demand forecasting in situations with limited data availability. The proposed WBANN method is aimed at improving the accuracy and reliability of water demand forecasting. Daily maximum temperature, total precipitation and water demand data for almost three years were used in this study. It was concluded that the hybrid WBANN model was more accurate compared to the ANN, BANN and WANN methods, and can be applied successfully for operational water demand forecasting. The WBANN model simulated peak water demand very effectively. The better performance of the WBANN model indicated that wavelet analysis significantly improved the model’s performance, whereas the bootstrap technique improved the reliability of forecasts by producing ensemble forecasts. The WBANN model was also found to be effective in assessing the uncertainty associated with water demand forecasts in terms of confidence bands; this can be helpful in operational water demand forecasting.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2692 ◽  
Author(s):  
Salah L. Zubaidi ◽  
Iqbal H. Abdulkareem ◽  
Khalid S. Hashim ◽  
Hussein Al-Bugharbee ◽  
Hussein Mohammed Ridha ◽  
...  

Urban water demand prediction based on climate change is always challenging for water utilities because of the uncertainty that results from a sudden rise in water demand due to stochastic patterns of climatic factors. For this purpose, a novel combined methodology including, firstly, data pre-processing techniques were employed to decompose the time series of water and climatic factors by using empirical mode decomposition and identifying the best model input via tolerance to avoid multi-collinearity. Second, the artificial neural network (ANN) model was optimised by an up-to-date slime mould algorithm (SMA-ANN) to predict the medium term of the stochastic signal of monthly urban water demand. Ten climatic factors over 16 years were used to simulate the stochastic signal of water demand. The results reveal that SMA outperforms a multi-verse optimiser and backtracking search algorithm based on error scale. The performance of the hybrid model SMA-ANN is better than ANN (stand-alone) based on the range of statistical criteria. Generally, this methodology yields accurate results with a coefficient of determination of 0.9 and a mean absolute relative error of 0.001. This study can assist local water managers to efficiently manage the present water system and plan extensions to accommodate the increasing water demand.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
David Palchak ◽  
Siddharth Suryanarayanan ◽  
Daniel Zimmerle

This paper presents an artificial neural network (ANN) for forecasting the short-term electrical load of a university campus using real historical data from Colorado State University. A spatio-temporal ANN model with multiple weather variables as well as time identifiers, such as day of week and time of day, are used as inputs to the network presented. The choice of the number of hidden neurons in the network is made using statistical information and taking into account the point of diminishing returns. The performance of this ANN is quantified using three error metrics: the mean average percent error; the error in the ability to predict the occurrence of the daily peak hour; and the difference in electrical energy consumption between the predicted and the actual values in a 24-h period. These error measures provide a good indication of the constraints and applicability of these predictions. In the presence of some enabling technologies such as energy storage, rescheduling of noncritical loads, and availability of time of use (ToU) pricing, the possible demand-side management options that could stem from an accurate prediction of energy consumption of a campus include the identification of anomalous events as well the management of usage.


Transport ◽  
2012 ◽  
Vol 26 (4) ◽  
pp. 353-366 ◽  
Author(s):  
Mehmet Metin Kunt ◽  
Iman Aghayan ◽  
Nima Noii

This paper focuses on predicting the severity of freeway traffic accidents by employing twelve accident-related parameters in a genetic algorithm (GA), pattern search and artificial neural network (ANN) modelling methods. The models were developed using the input parameters of driver's age and gender, the use of a seat belt, the type and safety of a vehicle, weather conditions, road surface, speed ratio, crash time, crash type, collision type and traffic flow. The models were constructed based on 1000 of crashes in total that occurred during 2007 on the Tehran–Ghom Freeway due to the fact that the remaining records were not suitable for this study. The GA evaluated eleven equations to obtain the best one. Then, GA and PS methods were combined using the best GA equation. The neural network used multi-layer perceptron (MLP) architecture that consisted of a multi-layer feed-forward network with hidden sigmoid and linear output neurons that could also fit multi-dimensional mapping problems arbitrarily well. The ANN was applied during training, testing and validation and had 12 inputs, 25 neurons in the hidden layers and 3 neurons in the output layer. The best-fit model was selected according to the R-value, root mean square errors (RMSE), mean absolute errors (MAE) and the sum of square error (SSE). The highest R-value was obtained for the ANN around 0.87, demonstrating that the ANN provided the best prediction. The combination of GA and PS methods allowed for various prediction rankings ranging from linear relationships to complex equations. The advantage of these models is improving themselves adding new data.


Water polluted with microorganisms and pathogens is one of the most significant hazards to public health. Potential microorganisms unsafe to human health can be destroyed through effective disinfection. To stop the re-growth of microorganisms, it is also advisable to take care of the residual disinfectant in the water distribution networks. The most frequently used cleanser material is chlorine. When the chlorine dosage is too low, there will be a deficiency of enough residues at the end of the water network system, leading to re-growth of microorganisms. Addition of an excessive amount of chlorine will lead to corrosion of the pipeline network and also the development of disinfection by-products (DBPs) including carcinogens. Thus, to determine the best rate of chlorine dosage, it is essential to model the system to forecast chlorine decay within the network. In this research study, two major modeling and optimization strategies were employed to assess the optimum dosage of chlorine for municipal water disinfection and also to predict residual chlorine at any predetermined node within the water distribution network. Artificial neural network (ANN) modeling techniques were used to forecast chlorine concentrations in different nodes in the urban water distribution system in Muscat, the capital of the Sultanate of Oman. One-year dataset from one of the distribution system was used for conducting network modeling in this study. The input factors to RSM model considered were pH, chlorine dosage and time. Response variables for RSM model were fixed as total organic carbon (TOC), Biological oxygen demand (BOD) and residual chlorine An Artificial neural network (ANN) model for residual chlorine was created with pH, inlet-concentration of chlorine and initial temperature as input parameters and residual chlorine in the piping network as an output parameter. The ANN model created using these data can be employed to forecast the residual chlorine value in the urban water network at any given specific location. The results from this study utilizing the uniqueness of an ANN model to predict residual chlorine and water quality parameters have the potential to detect complex, higher-order behavior between input and output parameters exist in urban water distribution system.


Author(s):  
Yao Kouassi Benjamin ◽  
Emmanuel Assidjo Nogbou ◽  
Gossan Ado ◽  
Catherine Azzaro-Pantel ◽  
André Davin

The application of a hybrid framework based on the combination, artificial neural network-genetic algorithm (ANN-GA), for n-thymol synthesis modeling and optimization has been developed. The effects of molar ratio propylene/cresol (X1), catalyst mass (X2) and temperature (X3) on n-thymol selectivity Y1 and m-cresol conversion Y2 were studied. A 3-8-2 ANN model was found to be very suitable for reaction modeling. The multiobjective optimization, led to optimal operating conditions (0.55 ? X1 ? 0.77; 1.773 g ? X2 ? 1.86 g; 289.74 °C ? X3 ? 291.33 °C) representing good solutions for obtaining high n-thymol selectivity and high m-cresol conversion. This optimal zone corresponded to n-thymol selectivity and m-cresol conversion ranging respectively in the interval [79.3; 79.5]% and [13.4 %; 23.7]%. These results were better than those obtained with a sequential method based on experimental design for which, optimum conditions led to n-thymol selectivity and m-cresol conversion values respectively equal to 67% and 11%. The hybrid method ANN-GA showed its ability to solve complex problems with a good fitting.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xin Xiong ◽  
Feng Gao ◽  
Keping Zhou ◽  
Yuxu Gao ◽  
Chun Yang

Rock compressive strength is an important mechanical parameter for the design, excavation, and stability analysis of rock mass engineering in cold regions. Accurate and rapid prediction of rock compressive strength has great engineering value in guiding the efficient construction of rock mass engineering in a cold regions. In this study, the prediction of triaxial compressive strength (TCS) for sandstone subjected to freeze-thaw cycles was proposed using a genetic algorithm (GA) and an artificial neural network (ANN). For this purpose, a database including four model inputs, namely, the longitudinal wave velocity, porosity, confining pressure, and number of freeze-thaw cycles, and one output, the TCS of the rock, was established. The structure, initial connection weights, and biases of the ANN were optimized progressively based on GA. After obtaining the optimal GA-ANN model, the performance of the GA-ANN model was compared with that of a simple ANN model. The results revealed that the proposed hybrid GA-ANN model had a higher accuracy in predicting the testing datasets than the simple ANN model: the root mean square error (RMSE), mean absolute error (MAE), and R squared ( R 2 ) were equal to 1.083, 0.893, and 0.993, respectively, for the hybrid GA-ANN model, while the corresponding values were 2.676, 2.153, and 0.952 for the simple ANN model.


Sign in / Sign up

Export Citation Format

Share Document