scholarly journals Analyzing, Modeling and Simulation of Humanoid Robot Hand Motion

2014 ◽  
Vol 96 ◽  
pp. 489-499 ◽  
Author(s):  
Ivan Virgala ◽  
Michal Kelemen ◽  
Martin Varga ◽  
Piotr Kuryło
2009 ◽  
Vol 42 (16) ◽  
pp. 431-436 ◽  
Author(s):  
Mai Mishima ◽  
Haruhisa Kawasaki ◽  
Tetsuya Mouri ◽  
Takahiro Endo

2000 ◽  
Author(s):  
Michael L. Turner ◽  
Ryan P. Findley ◽  
Weston B. Griffin ◽  
Mark R. Cutkosky ◽  
Daniel H. Gomez

Abstract This paper describes the development of a system for dexterous telemanipulation and presents the results of tests involving simple manipulation tasks. The user wears an instrumented glove augmented with an arm-grounded haptic feedback apparatus. A linkage attached to the user’s wrist measures gross motions of the arm. The movements of the user are transferred to a two fingered dexterous robot hand mounted on the end of a 4-DOF industrial robot arm. Forces measured at the robot fingers can be transmitted back to the user via the haptic feedback apparatus. The results obtained in block-stacking and object-rolling experiments indicate that the addition of force feedback to the user did not improve the speed of task execution. In fact, in some cases the presence of incomplete force information is detrimental to performance speed compared to no force information. There are indications that the presence of force feedback did aid in task learning.


2021 ◽  
pp. 386-396
Author(s):  
Timothy Bickmore ◽  
Prasanth Murali ◽  
Yunus Terzioglu ◽  
Shuo Zhou

Author(s):  
Venketesh N. Dubey ◽  
Richard M. Crowder

This paper presents a design for a reconfigurable packaging system that can handle cartons of different shape and sizes and is amenable to ever changing demands of packaging industries for perfumery and cosmetic products. The system takes structure of a multi-fingered robot hand, which can provide fine motions, and dexterous manipulation capability that may be required in a typical packaging-assembly line. The paper outlines advanced modeling and simulation undertaken to design the packaging system and discusses the experimental work carried out. The new packaging system is based on the principle of reconfigurability, that shows adaptability to simple as well as complex carton geometry. The rationale of developing such a system is presented with description of its human equivalent. The hardware and software implementations are also discussed together with directions for future research.


2019 ◽  
Vol 31 (1) ◽  
pp. 16-26 ◽  
Author(s):  
Haruhisa Kawasaki ◽  
◽  
Tetsuya Mouri

Humanoid robot hands are expected to replace human hands in the dexterous manipulation of objects. This paper presents a review of humanoid robot hand research and development. Humanoid hands are also applied to multifingered haptic interfaces, hand rehabilitation support systems, sEMG prosthetic hands, telepalpation systems, etc. The developed application systems in our group are briefly introduced.


Sign in / Sign up

Export Citation Format

Share Document