scholarly journals Numerical Simulation of Unsteady Separated Flow over a Delta Wing Using Cartesian Grids and DES/DDES

2015 ◽  
Vol 99 ◽  
pp. 423-427 ◽  
Author(s):  
Meng Lv ◽  
Shuai Fang ◽  
Yudong Zhang
1987 ◽  
Author(s):  
F. GILLIAM ◽  
J. WISSLER ◽  
J. WALKER ◽  
M. ROBINSON

1979 ◽  
Author(s):  
M. FRANCIS ◽  
J. KEESEE ◽  
J. LANG ◽  
G. SPARKS ◽  
G. SISSON

1973 ◽  
Vol 24 (2) ◽  
pp. 120-128 ◽  
Author(s):  
J E Barsby

SummarySolutions to the problem of separated flow past slender delta wings for moderate values of a suitably defined incidence parameter have been calculated by Smith, using a vortex sheet model. By increasing the accuracy of the finite-difference technique, and by replacing Smith’s original nested iteration procedure, to solve the non-linear simultaneous equations that arise, by a Newton’s method, it is possible to extend the range of the incidence parameter over which solutions can be obtained. Furthermore for sufficiently small values of the incidence parameter, new and unexpected results in the form of vortex systems that originate inboard from the leading edge have been discovered. These new solutions are the only solutions, to the author’s knowledge, of a vortex sheet leaving a smooth surface.Interest has centred upon the shape of the finite vortex sheet, the position of the isolated vortex, and the lift, and variations of these quantities are shown as functions of the incidence parameter. Although no experimental evidence is available, comparisons are made with the simpler Brown and Michael model in which all the vorticity is assumed to be concentrated onto an isolated line vortex. Agreement between these two models becomes very close as the value of the incidence parameter is reduced.


2014 ◽  
Vol 535 ◽  
pp. 66-70
Author(s):  
Chen Hong Zhao ◽  
Yong Gang Lei

Heat transfer and resistance characteristics of a tube inserted delta-winglet (inclination angle is 10 °) are studied by numerical simulation. The results show that the delta-winglet enhance the heat transfer of the enhancement tube inserted delta-winglet and improve the PEC with modest pressure drop penalties. Compared with based tubes, the delta-wings structure enhance the heat transfer 19.52%-31%.


Sign in / Sign up

Export Citation Format

Share Document