scholarly journals Improving Crop Adaptation to Climate Change through Strategic Crossing of Stress Adaptive Traits

2015 ◽  
Vol 29 ◽  
pp. 298-299
Author(s):  
M. Reynolds ◽  
G. Molero ◽  
M. Tattaris ◽  
C.M. Cossani ◽  
P. Alderman ◽  
...  
2021 ◽  

Abstract This book presents reviews on the application of the technology for crop improvement towards food and nutrition security, and research status on mutation breeding and associated biotechnologies in both seed crops and vegetatively propagated crops. It also presents perspectives on the significance of next-generation sequencing and bioinformatics in determining the molecular variants underlying mutations and on emerging biotechnologies such as gene editing. Reviews and articles are organized into five sections in the publication: (1) Contribution of Crop Mutant Varieties to Food Security; (2) Mutation Breeding in Crop Improvement and Climate-Change Adaptation; (3) Mutation Induction Techniques for Enhanced Genetic Variation; (4) Mutation Breeding in Vegetatively Propagated and Ornamental Crops; and (5) Induced Genetic Variation for Crop Improvement in the Genomic Era. The contents of this volume present excellent reference material for researchers, students and policy makers involved in the application of induced genetic variation in plants for the maintenance of biodiversity and the acceleration of crop adaptation to climate change to feed a growing global population in the coming years and decades.


2010 ◽  
Vol 161 (6) ◽  
pp. 216-222
Author(s):  
Oliver Gailing

Climate change is projected to lead to a major reorganization of our forests. For example, higher annual mean temperatures, longer growth seasons and drier summers are predicted for many parts of central and southern Europe, and in North America. In order to understand the genetic adaptation to climate change we need a better understanding of the genetic regulation of key traits involved in tolerance of water and temperature stress. Oaks (Quercus spp.) are excellent model species to study the adaptation of forest trees to changing environments. They show a wide geographic distribution in Europe and in North America as dominant tree species in many forests growing under a wide range of climatic and edaphic conditions. With the availability of a growing amount of functional and expressional candidate genes we are now able to test the functional importance of genes by associating nucleotide variation in these genes with phenotypic variation in adaptive traits in segregating or natural populations. Studies trying to associate genetic variation with phenotypic variation in adaptive traits can be performed in full-sib families derived from controlled crosses (Quantitative Trait Loci [QTL] mapping) or in natural populations (association mapping). For several important adaptive traits QTL were mapped, the underlying genes have to be tested in natural populations. A future objective is to test whether genes that underlie phenotypic variation in adaptive traits are involved in local genetic adaptation and viability selection at the seedling stage, linked to reciprocal transplant experiments in order to assess the performance over climatic gradients.


Crop Science ◽  
2011 ◽  
Vol 51 (6) ◽  
pp. 2337-2343 ◽  
Author(s):  
Kenneth J. Boote ◽  
Amir M. H. Ibrahim ◽  
Renee Lafitte ◽  
Rebecca McCulley ◽  
Carlos Messina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document