adaptive traits
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 94)

H-INDEX

37
(FIVE YEARS 5)

2022 ◽  
Vol 13 (3) ◽  
Author(s):  
Parashuram Dattu Patroti ◽  
Ragimasalawada Madhusudhana ◽  
Sujay Rakshit ◽  
Nitesh Shirur Devaraja ◽  
Kuldeep Kumar Sharma ◽  
...  

2021 ◽  
Author(s):  
Charles Coluzzi ◽  
Maria del Pilar Garcillán-Barcia ◽  
Fernando de la Cruz ◽  
Eduardo P.C. Rocha

AbstractConjugation drives horizontal gene transfer of many adaptive traits across prokaryotes. Yet, only a fourth of the plasmids encode the functions necessary to conjugate autonomously, others being non-mobile or mobilizable by other elements. How these different plasmids evolve is poorly understood. Here, we studied plasmid evolution in terms of their gene repertoires and relaxases. We observed that gene content in plasmid varies rapidly in relation to the rate of evolution of relaxases, such that plasmids with 95% identical relaxases have on average fewer than 50% of homologs. The identification of 249 recent transitions in terms of mobility types revealed that they are associated with even greater changes in gene repertoires, possibly mediated by transposable elements that are more abundant in such plasmids. These changes include pseudogenization of the conjugation locus, exchange of replication initiators, and extensive gene loss. In some instances, the transition between mobility types also leads to the genesis of novel plasmid taxonomic units. Most of these transitions are short-lived, suggesting a source-sink dynamic, where conjugative plasmids constantly generate mobilizable and putatively non-mobilizable plasmids by gene deletion. Yet, in few cases such transitions resulted in the emergence of large clades of relaxases present only in mobilizable plasmids, suggesting successful specialization of these families in the hijacking of diverse conjugative systems. Our results shed further light on the huge plasticity of plasmids, suggest that many non-conjugative plasmids emerged recently from conjugative elements and allowed to quantify how changes in plasmid mobility shape the variation of their gene repertoires.


Botany ◽  
2021 ◽  
Author(s):  
Jamile Fernandes Lima ◽  
Kleber Resende Silva ◽  
Daniela Guimarães Simão ◽  
Vinícius Coelho Kuster ◽  
Denis Oliveira

Leaf ontogenesis is determinant for the establishment and regulation of its structural and functional properties, in addition to being an excellent tool for assignment to different groups of angiosperms. Even though the importance of leaf morphology and anatomy for taxonomic use is well known, few studies have addressed the processes of leaf ontogeny in Melastomataceae. Herein, we sought to define the ontogenetic steps of leaf of Trembleya phlogiformis, highlighting the indumentum, to understand the main functional traits. Shoot apex, young and fully expanded leaves were processed by usual light microscopy procedures. At the first node, leaf primordia are densely covered with trichomes and emergences. The adaxial layer of ground meristem gives rise to the palisade parenchyma, the procambium originates from median layers of ground meristem and the spongy parenchyma develops from abaxial layers of ground meristem. The differentiation of isobilateral mesophyll on leaves of T. phlogiformis, a common feature in Microlicieae, comes from ground meristem stratification. However, T. phlogiformis stands out by showing in the leaf mature spongy parenchyma cells with irregular shapes. The leaf ontogeny reveals distinct mechanisms of cell differentiation and may be important for the establishment of functional adaptive traits.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Srinivas Thaduri ◽  
Srisailam Marupakula ◽  
Olle Terenius ◽  
Piero Onorati ◽  
Christian Tellgren-Roth ◽  
...  

AbstractThere is increasing evidence that honeybees (Apis mellifera L.) can adapt naturally to survive Varroa destructor, the primary cause of colony mortality world-wide. Most of the adaptive traits of naturally varroa-surviving honeybees concern varroa reproduction. Here we investigate whether factors in the honeybee metagenome also contribute to this survival. The quantitative and qualitative composition of the bacterial and viral metagenome fluctuated greatly during the active season, but with little overall difference between varroa-surviving and varroa-susceptible colonies. The main exceptions were Bartonella apis and sacbrood virus, particularly during early spring and autumn. Bombella apis was also strongly associated with early and late season, though equally for all colonies. All three affect colony protein management and metabolism. Lake Sinai virus was more abundant in varroa-surviving colonies during the summer. Lake Sinai virus and deformed wing virus also showed a tendency towards seasonal genetic change, but without any distinction between varroa-surviving and varroa-susceptible colonies. Whether the changes in these taxa contribute to survival or reflect demographic differences between the colonies (or both) remains unclear.


Author(s):  
Kathryn Billane ◽  
Ellie Harrison ◽  
Duncan Cameron ◽  
Michael A. Brockhurst

Conjugative plasmids play an important role in bacterial evolution by transferring niche-adaptive traits between lineages, thus driving adaptation and genome diversification. It is increasingly clear, however, that in addition to this evolutionary role, plasmids also manipulate the expression of a broad range of bacterial phenotypes. In this review, we argue that the effects that plasmids have on the expression of bacterial phenotypes may often represent plasmid adaptations, rather than mere deleterious side effects. We begin by summarizing findings from untargeted omics analyses, which give a picture of the global effects of plasmid acquisition on host cells. Thereafter, because many plasmids are capable of both vertical and horizontal transmission, we distinguish plasmid-mediated phenotypic effects into two main classes based upon their potential fitness benefit to plasmids: (i) those that promote the competitiveness of the host cell in a given niche and thereby increase plasmid vertical transmission, and (ii) those that promote plasmid conjugation and thereby increase plasmid horizontal transmission. Far from being mere vehicles for gene exchange, we propose that plasmids often act as sophisticated genetic parasites capable of manipulating their bacterial hosts for their own benefit. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1897
Author(s):  
Endale G. Tafesse ◽  
Krishna K. Gali ◽  
V. B. Reddy Lachagari ◽  
Rosalind Bueckert ◽  
Thomas D. Warkentin

Heat and drought, individually or in combination, limit pea productivity. Fortunately, substantial genetic diversity exists in pea germplasm for traits related to abiotic stress resistance. Understanding the genetic basis of resistance could accelerate the development of stress-adaptive cultivars. We conducted a genome-wide association study (GWAS) in pea on six stress-adaptive traits with the aim to detect the genetic regions controlling these traits. One hundred and thirty-five genetically diverse pea accessions were phenotyped in field studies across three or five environments under stress and control conditions. To determine marker trait associations (MTAs), a total of 16,877 valuable single nucleotide polymorphisms (SNPs) were used in association analysis. Association mapping detected 15 MTAs that were significantly (p ≤ 0.0005) associated with the six stress-adaptive traits averaged across all environments and consistent in multiple individual environments. The identified MTAs were four for lamina wax, three for petiole wax, three for stem thickness, two for the flowering duration, one for the normalized difference vegetation index (NDVI), and two for the normalized pigment and chlorophyll index (NPCI). Sixteen candidate genes were identified within a 15 kb distance from either side of the markers. The detected MTAs and candidate genes have prospective use towards selecting stress-hardy pea cultivars in marker-assisted selection.


2021 ◽  
Vol 118 (47) ◽  
pp. e2004901118
Author(s):  
Melanie J. Wilkinson ◽  
Federico Roda ◽  
Greg M. Walter ◽  
Maddie E. James ◽  
Rick Nipper ◽  
...  

Natural selection is responsible for much of the diversity we see in nature. Just as it drives the evolution of new traits, it can also lead to new species. However, it is unclear whether natural selection conferring adaptation to local environments can drive speciation through the evolution of hybrid sterility between populations. Here, we show that adaptive divergence in shoot gravitropism, the ability of a plant’s shoot to bend upwards in response to the downward pull of gravity, contributes to the evolution of hybrid sterility in an Australian wildflower, Senecio lautus. We find that shoot gravitropism has evolved multiple times in association with plant height between adjacent populations inhabiting contrasting environments, suggesting that these traits have evolved by natural selection. We directly tested this prediction using a hybrid population subjected to eight rounds of recombination and three rounds of selection in the field. Our experiments revealed that shoot gravitropism responds to natural selection in the expected direction of the locally adapted population. Using the advanced hybrid population, we discovered that individuals with extreme differences in gravitropism had more sterile crosses than individuals with similar gravitropic responses, which were largely fertile, indicating that this adaptive trait is genetically correlated with hybrid sterility. Our results suggest that natural selection can drive the evolution of locally adaptive traits that also create hybrid sterility, thus revealing an evolutionary connection between local adaptation and the origin of new species.


2021 ◽  
Author(s):  
Cari D. Lewis ◽  
Brenna. A. Levine ◽  
Coby Schal ◽  
Edward L. Vargo ◽  
Warren Booth

Abstract Over the past three decades, the bed bug Cimex lectularius has resurged as a prominent indoor pest on a global scale. Knockdown-associated insecticide resistance (kdr) involving the voltage-gated sodium channel, targeted by organochlorine and pyrethroid insecticides, was first reported in C. lectularius within a few years of the widespread use of Dichlorodiphenyltrichloroethane (DDT) and has been implicated as a significant factor contributing to the species recent resurgence. Since then, selection with pyrethroid insecticides has intensified, yet little is known regarding its short-term impacts on the frequency of kdr-associated mutations. Here, we report temporal changes in the frequencies of three kdr-associated mutations in C. lectularius populations collected across the United States from two time periods, sampled approximately a decade apart. Results reveal a significant increase in the frequencies of kdr-associated mutations over this period, and absence of the insecticide-susceptible genotype in recent collections. Furthermore, a significant transition towards infestations possessing multiple kdr-associated mutations was observed. These results suggest that the persistent use of pyrethroid insecticides over the past decade continues to impose strong selection pressure on C. lectularius populations, driving the proliferation of kdr-associated mutations. They demonstrate that, if unabated, strong anthropogenic selection can drive the rapid evolution of adaptive traits.


2021 ◽  
Author(s):  
Susheel Bhanu Busi ◽  
Massimo Bourquin ◽  
Stilianos Fodelianakis ◽  
Grégoire Michoud ◽  
Tyler J. Kohler ◽  
...  

AbstractMicroorganisms dominate life in cryospheric ecosystems. In glacier-fed streams (GFSs), ecological windows of opportunities allow complex microbial biofilms to develop and transiently form the basis of the food web, thereby controlling key ecosystem processes. Here, using high-resolution metagenomics, we unravel strategies that allow biofilms to seize this opportunity in an ecosystem otherwise characterized by harsh environmental conditions. We found a diverse microbiome spanning the entire tree of life and including a rich virome. Various and co-existing energy acquisition pathways point to diverse niches and the simultaneous exploitation of available resources, likely fostering the establishment of complex biofilms in GFSs during windows of opportunity. The wide occurrence of rhodopsins across metagenome-assembled genomes (MAGs), besides chlorophyll, highlights the role of solar energy capture in these biofilms. Concomitantly, internal carbon and nutrient cycling between photoautotrophs and heterotrophs may help overcome constraints imposed by the high oligotrophy in GFSs. MAGs also revealed mechanisms potentially protecting bacteria against low temperatures and high UV-radiation. The selective pressure of the GFS environment is further highlighted by the phylogenomic analysis, differentiating the representatives of the genus Polaromonas, an important component of the GFS microbiome, from those found in other ecosystems. Our findings reveal key genomic underpinnings of adaptive traits that contribute to the success of complex biofilms to exploit environmental opportunities in GFSs, now rapidly changing owing to global warming.


2021 ◽  
Vol 288 (1959) ◽  
Author(s):  
Lukas Tietgen ◽  
Ingerid J. Hagen ◽  
Oddmund Kleven ◽  
Cecilia Di Bernardi ◽  
Thomas Kvalnes ◽  
...  

Genome-wide association studies provide good opportunities for studying the genetic basis of adaptive traits in wild populations. Yet, previous studies often failed to identify major effect genes. In this study, we used high-density single nucleotide polymorphism and individual fitness data from a wild non-model species. Using a whole-genome approach, we identified the MC1R gene as the sole causal gene underlying Arctic fox Vulpes lagopus fur colour. Further, we showed the adaptive importance of fur colour genotypes through measures of fitness that link ecological and evolutionary processes. We found a tendency for blue foxes that are heterozygous at the fur colour locus to have higher fitness than homozygous white foxes. The effect of genotype on fitness was independent of winter duration but varied with prey availability, with the strongest effect in years of increasing rodent populations. MC1R is located in a genomic region with high gene density, and we discuss the potential for indirect selection through linkage and pleiotropy. Our study shows that whole-genome analyses can be successfully applied to wild species and identify major effect genes underlying adaptive traits. Furthermore, we show how this approach can be used to identify knowledge gaps in our understanding of interactions between ecology and evolution.


Sign in / Sign up

Export Citation Format

Share Document