scholarly journals Mutation breeding, genetic diversity and crop adaptation to climate change

Abstract This book presents reviews on the application of the technology for crop improvement towards food and nutrition security, and research status on mutation breeding and associated biotechnologies in both seed crops and vegetatively propagated crops. It also presents perspectives on the significance of next-generation sequencing and bioinformatics in determining the molecular variants underlying mutations and on emerging biotechnologies such as gene editing. Reviews and articles are organized into five sections in the publication: (1) Contribution of Crop Mutant Varieties to Food Security; (2) Mutation Breeding in Crop Improvement and Climate-Change Adaptation; (3) Mutation Induction Techniques for Enhanced Genetic Variation; (4) Mutation Breeding in Vegetatively Propagated and Ornamental Crops; and (5) Induced Genetic Variation for Crop Improvement in the Genomic Era. The contents of this volume present excellent reference material for researchers, students and policy makers involved in the application of induced genetic variation in plants for the maintenance of biodiversity and the acceleration of crop adaptation to climate change to feed a growing global population in the coming years and decades.

2021 ◽  
Vol 118 (22) ◽  
pp. e2004846117
Author(s):  
Ryan A. Nasti ◽  
Daniel F. Voytas

Crop improvement relies heavily on genetic variation that arises spontaneously through mutation. Modern breeding methods are very adept at combining this genetic variation in ways that achieve remarkable improvements in plant performance. Novel traits have also been created through mutation breeding and transgenesis. The advent of gene editing, however, marks a turning point: With gene editing, synthetic variation will increasingly supplement and, in some cases, supplant the genetic variation that occurs naturally. We are still in the very early stages of realizing the opportunity provided by plant gene editing. At present, typically only one or a few genes are targeted for mutation at a time, and most mutations result in loss of gene function. New technological developments, however, promise to make it possible to perform gene editing at scale. RNA virus vectors, for example, can deliver gene-editing reagents to the germ line through infection and create hundreds to thousands of diverse mutations in the progeny of infected plants. With developmental regulators, edited somatic cells can be induced to form meristems that yield seed-producing shoots, thereby increasing throughput and shrinking timescales for creating edited plants. As these approaches are refined and others developed, they will allow for accelerated breeding, the domestication of orphan crops and the reengineering of metabolism in a more directed manner than has ever previously been possible.


2010 ◽  
Vol 161 (6) ◽  
pp. 216-222
Author(s):  
Oliver Gailing

Climate change is projected to lead to a major reorganization of our forests. For example, higher annual mean temperatures, longer growth seasons and drier summers are predicted for many parts of central and southern Europe, and in North America. In order to understand the genetic adaptation to climate change we need a better understanding of the genetic regulation of key traits involved in tolerance of water and temperature stress. Oaks (Quercus spp.) are excellent model species to study the adaptation of forest trees to changing environments. They show a wide geographic distribution in Europe and in North America as dominant tree species in many forests growing under a wide range of climatic and edaphic conditions. With the availability of a growing amount of functional and expressional candidate genes we are now able to test the functional importance of genes by associating nucleotide variation in these genes with phenotypic variation in adaptive traits in segregating or natural populations. Studies trying to associate genetic variation with phenotypic variation in adaptive traits can be performed in full-sib families derived from controlled crosses (Quantitative Trait Loci [QTL] mapping) or in natural populations (association mapping). For several important adaptive traits QTL were mapped, the underlying genes have to be tested in natural populations. A future objective is to test whether genes that underlie phenotypic variation in adaptive traits are involved in local genetic adaptation and viability selection at the seedling stage, linked to reciprocal transplant experiments in order to assess the performance over climatic gradients.


2015 ◽  
Vol 29 ◽  
pp. 298-299
Author(s):  
M. Reynolds ◽  
G. Molero ◽  
M. Tattaris ◽  
C.M. Cossani ◽  
P. Alderman ◽  
...  

2021 ◽  
Vol 12 (3) ◽  
pp. 10
Author(s):  
Fatma Sarsu

Mutation breeding for crop improvement is a technique used for over 70 years. It is a fast way to increase the rate of spontaneous genetic variation in plants contributing to global food security.  The genetic variability, created through mutagenesis i.e. physical or chemical, is an important breeding material for developing improved varieties and many studies in the field of functional genomics. The randomly generated heritable genetic changes are expressed in the mutant plants, which are selected for new and useful traits, such as high yielding, disease resistance, tolerance to abiotic stresses and improved nutritional quality. The technique helps to improve the tolerance of crop species to adverse climatic conditions, such as extremes of temperatures, drought, occurrence of pests and diseases. Through support provided by the Joint FAO/IAEA Division, significant agronomic and economic impact has been generated in many countries. The FAO/IAEA Mutant Variety Database (MVD) (http://mvd.iaea.org) demonstrates the significance of mutation induction as an efficient tool in crop improvement. The extensive use of induced mutant germplasms in crop improvement programmes resulted in releasing of more than 3,332 mutant varieties from around 228 crop species (20 July 2020).


Sign in / Sign up

Export Citation Format

Share Document