scholarly journals Relationship between retention forces and stress at the distal border in maxillary complete dentures: Measurement of retention forces and finite-element analysis in individual participants

2017 ◽  
Vol 117 (4) ◽  
pp. 524-531 ◽  
Author(s):  
Takamasa Ogawa ◽  
Yuji Sato ◽  
Noboru Kitagawa ◽  
Momoe Nakatsu
Author(s):  
Tomás Geremia ◽  
◽  
Leonardo Barcellos ◽  
Leandro Corso ◽  
Eduardo Villarinho ◽  
...  

Objectives: This nonlinear three-dimensional finite element analysis (FEA) study evaluated the effect of the number of implants, distal implant inclination, and use of angled abutments on stress magnitude and distribution in cortical bone (CB), abutment screw (AS), and prosthetic screw (PS) of implant-supported fixed complete dentures. Methods: Nonlinear 3D FEA models of mandibular fixed complete dentures were created with five, four, or three parallel straight implants (5S, 4S, 3S) and with tilted distal implants (5T, 4T, 3T). In addition, the 5T model was tested using angled abutments over the tilted distal implants to re-align the implant inclination. A 100-N axial load was applied over the first molar region (cantilever) to analyze the von Mises stresses in selected points (CB, AS, and PS). Results: The implant adjacent to the load showed the highest stresses in CB, AS, and PS. The model with three implants showed higher stresses than the ones with four and five implants. Peak stresses in the AS increased 40% from five to four implants and 100% from five to three implants. Tilting the distal implants increased stresses in CB. Peak stress in the PS increased 150% from 5S to 5T models and 100% from 4S to 4T models. Angled abutments generated lower stresses on CB and AS but higher stresses on PS. Conclusions: The results suggest that stresses in the cortical bone, abutment screw, and prosthetic screw increase when tilting the posterior implants and reducing the number of implants. The use of angled abutments decreased stresses at the bone-implant interface and in abutment screws but increased stresses on prosthetic screws.


2013 ◽  
Vol 39 (5) ◽  
pp. 575-581 ◽  
Author(s):  
Mateus Bertolini Fernandes dos Santos ◽  
Rafael Leonardo Xediek Consani ◽  
Marcelo Ferraz Mesquita

The aim of this study was to evaluate the stress distribution in the bone adjacent to submerged implants during masticatory function in conventional complete dentures with different soft liners through finite element analysis. Three-dimensional models of a severely resorbed mandible with 2 and 4 submerged implants in the anterior region were created and divided into the following situations: (1) conventional complete dentures (control group); and conventional complete dentures with different soft liner materials, (2) Coe-Comfort, (3) Softliner, and (4) Molteno Hard. The models were exported to mechanical simulation software and 2 simulations were done with the load in the inferior right canine (35 N) and the inferior right first molar (50 N). The data were qualitatively evaluated using the maximum principal stress and microstrain values given by the software. The use of soft liners provides decreased levels of stress and microstrains in peri-implant bone when the load was applied to canine teeth. Considering all of the values obtained in this study, the use of softer materials is the most suitable for use during the period of osseointegration.


2002 ◽  
Vol 11 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Chatchai Kunavisarut ◽  
Lisa A. Lang ◽  
Brian R. Stoner ◽  
David A. Felton

Sign in / Sign up

Export Citation Format

Share Document