Dosimetric effect of photon beam energy on volumetric modulated arc therapy treatment plan quality due to body habitus in advanced prostate cancer

2015 ◽  
Vol 5 (6) ◽  
pp. e625-e633 ◽  
Author(s):  
D.N. Stanley ◽  
T. Popp ◽  
C.S. Ha ◽  
G.P. Swanson ◽  
T.Y. Eng ◽  
...  
2016 ◽  
Vol 58 (4) ◽  
pp. 579-590 ◽  
Author(s):  
Ghulam Murtaza ◽  
Stefania Cora ◽  
Ehsan Ullah Khan

Abstract Volumetric-modulated arc therapy (VMAT) is an efficient form of radiotherapy used to deliver intensity-modulated radiotherapy beams. The aim of this study was to investigate the relative insensitivity of VMAT plan quality to gantry angle spacing (GS). Most previous VMAT planning and dosimetric work for GS resolution has been conducted for single arc VMAT. In this work, a quantitative comparison of dose–volume indices (DIs) was made for partial-, single- and double-arc VMAT plans optimized at 2°, 3° and 4° GS, representing a large variation in deliverable multileaf collimator segments. VMAT plans of six prostate cancer and six head-and-neck cancer patients were simulated for an Elekta SynergyS® Linac (Elekta Ltd, Crawley, UK), using the SmartArc™ module of Pinnacle³ TPS, (version 9.2, Philips Healthcare). All optimization techniques generated clinically acceptable VMAT plans, except for the single-arc for the head-and-neck cancer patients. Plan quality was assessed by comparing the DIs for the planning target volume, organs at risk and normal tissue. A GS of 2°, with finest resolution and consequently highest intensity modulation, was considered to be the reference, and this was compared with GS 3° and 4°. The differences between the majority of reference DIs and compared DIs were <2%. The metrics, such as treatment plan optimization time and pretreatment (phantom) dosimetric calculation time, supported the use of a GS of 4°. The ArcCHECK™ phantom–measured dosimetric agreement verifications resulted in a >95.0% passing rate, using the criteria for γ (3%, 3 mm). In conclusion, a GS of 4° is an optimal choice for minimal usage of planning resources without compromise of plan quality.


2020 ◽  
Author(s):  
Chengqiang Li ◽  
Cheng Tao ◽  
Tong Bai ◽  
Zhenjiang Li ◽  
Ying Tong ◽  
...  

Abstract Background: To investigate the beam complexity and monitor unit(MU)efficiency issues for two different volumetric modulated arc therapy (VMAT) delivery technologies for patients with left-sided breast cancer (BC) and nasopharyngeal carcinoma (NPC). Methods: Twelve left-sided BC and seven NPC cases were enrolled in this study. Each delivered treatment plan was optimized in Pinnacle 3 treatment planning system with Auto-Planning module for Trilogy and Synergy systems. Similar planning dose objectives and beam configuration were used for each site in two different delivery systems to produce clinically acceptable plans. Beam complexity was evaluated in terms of segment area(SA), segment width(SW), leaf sequence variability(LSV), aperture area variability(AAV), modulation complexity score(MCS) based on MLC sequence and MU. Results: With similar plan quality, the average SAs for Trilogy plans were smaller than those for Synergy plans: 55.5 ± 21.3 cm 2 vs. 66.3 ± 17.9 cm 2 (p<0.05) for the NPC cases, and 100.7 ± 49.2 cm 2 vs. 108.5 ± 42.7 cm 2 (p<0.05) for BC cases, respectively. The SW was statistically significant for two delivery systems (NPC: 6.87±1.95cm vs.6.72±2.71cm, p < 0.05; BC: 8.84±2.56cm vs.8.09±2.63cm, p < 0.05). LSV was statistically significant smaller for Trilogy (NPC: 0.84±0.033 vs.0.86±0.033, p < 0.05; BC: 0.89±0.026 vs.0.90±0.26, p < 0.05). The mean AAV was statistically significant larger for Trilogy than Synergy (NPC: 0.18±0.064 vs.0.14±0.037, p < 0.05; BC: 0.46±0.15 vs.0.33±0.13, p < 0.05). The MCS values for the Trilogy were higher than those for the Synergy: 0.14 ± 0.016vs. 0.12 ± 0.017 (p<0.05) for the NPC cases, and 0.42 ± 0.106 vs. 0.30 ± 0.087(p<0.05) for the BC cases. Compared with Synergy plans, the average MU for Trilogy plans were larger: 828.6±74.1MU and 782.9±85.2MU (p>0.05) for the NPC cases, and 444.8±61.3MU and 393.8±75.3MU (p>0.05) for the BC cases. Conclusions: The pinnacle 3 Auto planning system can optimize BC and NPC plans to obtain the same plan quality using Trilogy and Synergy systems. We found that this two systems resulted in different SA, SW, LSV, AAV and MCS. As a result, we suggested that beam complexity should be considered in providing further methodologies while optimizing VMAT auto planning.


2009 ◽  
Vol 14 (1) ◽  
pp. 18-31 ◽  
Author(s):  
Gopi SOLAIAPPAN ◽  
Ganesan SINGARAVELU ◽  
Aruna PRAKASARAO ◽  
Bouchaib RABBANI ◽  
Sanjay S. SUPE

Sign in / Sign up

Export Citation Format

Share Document