beam energy
Recently Published Documents


TOTAL DOCUMENTS

1363
(FIVE YEARS 243)

H-INDEX

41
(FIVE YEARS 6)

Author(s):  
Niraj Kumar Rai ◽  
Aman Gandhi ◽  
M T Senthil Kannan ◽  
Sujan Kumar Roy ◽  
Saneesh Nedumbally ◽  
...  

Abstract The pre-scission and post-scission neutron multiplicities are measured for the 18O + 184W reaction in the excitation energy range of 67.23−76.37 MeV. Langevin dynamical calculations are performed to infer the energy dependence of fission decay time in compliance with the measured neutron multiplicities. Different models for nuclear dissipation are employed for this purpose. Fission process is usually expected to be faster at a higher beam energy. However, we found an enhancement in the average fission time as the incident beam energy increases. It happens because a higher excitation energy helps more neutrons to evaporate that eventually stabilizes the system against fission. The competition between fission and neutron evaporation delicately depends on the available excitation energy and it is explained here with the help of the partial fission yields contributed by the different isotopes of the primary compound nucleus.


Author(s):  
Aaron Michael Hansen ◽  
Khanh Linh Nguyen ◽  
David Turnbull ◽  
Brian J Albright ◽  
Russell K. Follett ◽  
...  

Abstract Cross-beam energy transfer (CBET) was measured in two regimes where the energy transfer saturation mechanism was determined by the plasma and laser beam conditions. Linear kinetic CBET theory agreed well with the measured energy transfer in all experiment configurations and at all probe beam intensities when accounting for pump depletion and the plasma conditions measured using Thomson-scattering. Simultaneous CBET and Thomson-scattering measurements enabled uncertainties in the plasma conditions to be isolated from CBET theory, which allowed the saturation mechanisms to be identified. In the perpendicular-beam configuration the saturation mode was through ion heating, which resulted from ion trapping in the driven waves and subsequent ion-ion collisional heating. In the co-propagating beam configuration there was minimal ion heating and the saturation mode was through pump depletion.


2022 ◽  
Vol 92 (1) ◽  
pp. 45
Author(s):  
И.М. Балаченков ◽  
Н.Н. Бахарев ◽  
В.И. Варфоломеев ◽  
В.К. Гусев ◽  
М.В. Ильясова ◽  
...  

With an increase of magnetic field up to 0.8 T and plasma current to 400 kA, fast ion losses rate in the discharges with toroidal Alfven eigenmodes decreased in tokamak Globus-M2 comparing with Globus-M tokamak discharges. Taking into account the data on the discharges with increased magnetic field and plasma current, the regression fit of neutral particle analyzer flux drop in energy channel close to neutral beam energy on relative eigenmode magnitude, the value of magnetic field and plasma current was analyzed. The power of flux drop dependence on TAE magnitude was found to be ~0.5 and inverse proportional on the value of product of magnetic field and plasma current, which is highly likely is determined only by plasma current due to weak dependence on magnetic field. The result obtained indicates that fast ion losses in Globus-M2, stimulated by toroidal Alfven eigenmodes are mostly determined by the shift of passing orbits to the plasma edge. With the increase of plasma current and magnetic field, neutron flux drops arising in the moments of toroidal mode bursts have also decreased.


2021 ◽  
Vol 127 (26) ◽  
Author(s):  
A. Oudin ◽  
A. Debayle ◽  
C. Ruyer ◽  
D. Bénisti

Author(s):  
Zeqi Lu ◽  
Fei-Yang Zhang ◽  
Hailing Fu ◽  
Hu Ding ◽  
Li-Qun Chen

Abstract This paper presents an investigation of the performance of a coupled rotational double-beam energy harvester (DBEH) with magnetic nonlinearity. Two spring-connected cantilever beams are fixed on a rotating disc. Repelling magnets are attached to the frame and to the lower beam tip, and an equal-mass block is attached to the tip of the upper beam. To describe the dynamic response, a theoretical model related to the rotational motion of the coupled cantilever beam is derived from the Lagrange equations. In addition, the harmonic balance method, together with the arc-length continuation method, is applied to obtain the frequency response functions (FRFs). Parametric studies are then conducted to analyze the effect of varying the parameters on the energy harvesting performance, and numerical analysis is performed to validate the analytical solutions. Finally, the theoretical model is verified by forward- and reverse-frequency-sweeping experiments. The DBEH in rotational motion can perform effective energy harvesting over a wide range of rotational frequencies (10 to 35 rad/s). The upper beam is found to exhibit better energy harvesting efficiency than the lower beam around the resonant frequency. This study effectively broadens the energy harvesting bandwidth and provides a theoretical model for the design of nonlinear magnet-coupled double-beam structure in rotational energy harvesting.


2021 ◽  
Vol 137 (1) ◽  
Author(s):  
D. Mirarchi ◽  
R. B. Appleby ◽  
R. Bruce ◽  
M. Giovannozzi ◽  
A. Mereghetti ◽  
...  

AbstractThe design stored beam energy in the CERN high-luminosity large hadron collider (HL-LHC) upgrade is about 700 MJ, with about 36 MJ in the beam tails, according to estimates based on scaling considerations from measurements at the LHC. Such a large amount of stored energy in the beam tails poses serious challenges on its control and safe disposal. In particular, orbit jitters can cause significant losses on primary collimators, which can lead to accidental beam dumps, magnet quenches, or even permanent damage to collimators and other accelerator elements. Thus, active control of the diffusion speed of halo particles is necessary and the use of hollow electron lenses (HELs) represents the most promising approach to handle overpopulated tails at the HL-LHC. HEL is a very powerful and advanced tool that can be used for controlled depletion of beam tails, thus enhancing the performance of beam halo collimation. For these reasons, HELs have been recently included in the HL-LHC baseline. In this paper, we present detailed beam dynamics calculations performed with the goal of defining HEL specifications and operational scenarios for HL-LHC. The prospects for effective halo control in HL-LHC are presented.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kazuma Emoto ◽  
Kazunori Takahashi ◽  
Yoshinori Takao

Energy losses in a magnetic nozzle radiofrequency plasma thruster are investigated to improve the thruster efficiency and are calculated from particle energy losses in fully kinetic simulations. The simulations calculate particle energy fluxes with a vector resolution including the plasma energy lost to the dielectric wall, the plasma beam energy, and the divergent plasma energy in addition to collisional energy losses. As a result, distributions of energy losses in the thruster and the ratios of the energy losses to the input power are obtained. The simulation results show that the plasma energy lost to the dielectric is dramatically suppressed by increasing the magnetic field strength, and the ion beam energy increases instead. In addition, the divergent ion energy and collisional energy losses account for approximately 4%–12% and 30%–40%, respectively, regardless of the magnetic field strength.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yongfang Liu ◽  
Hiroshi Matsumoto ◽  
Lin Li ◽  
Ming Gu

AbstractX-ray free electron laser (XFEL) facility based on electron linear accelerator (LINAC) is regarded as one kind of the fourth-generation light source with the characteristics of high intensity, exceptional brightness, ultrashort pulse duration, and spatial coherence. In electron linear accelerator, energy of beam bunches is provided by high-power electromagnetic microwaves which are generated by a microwave tube called klystron. The stability of beam voltage of klystron occupies a key position in both the stability of output RF (Radio Frequency) power and the jitter of output RF phase, furthermore, it plays an extremely important role in beam energy stability of electron linear accelerator. In this paper, high power RF fluctuation and phase jitter of klystron output caused by beam voltage instability of klystron are analyzed and calculated. Influence of klystron beam voltage instability on beam energy gain in linear accelerator have also been further analyzed and calculated. The calculating procedure is particularly valuable for us to understand the relationship between pulse modulator stability and beam energy gain fluctuations. Finally, relevant experimental results measured by Shanghai Soft X-ray Free Electron Laser Test Facility (SXFEL-TF) is presented.


Sign in / Sign up

Export Citation Format

Share Document