COD removal from biologically stabilized landfill leachate using Advanced Oxidation Processes (AOPs)

2018 ◽  
Vol 120 ◽  
pp. 278-285 ◽  
Author(s):  
Q. Xu ◽  
G. Siracusa ◽  
S. Di Gregorio ◽  
Q. Yuan
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Jeremi Naumczyk ◽  
Izabela Prokurat ◽  
Piotr Marcinowski

Advanced oxidation processes (AOPs) such as H2O2/UV, O3/H2O2, modified Fenton, and modified photo-Fenton processes have been investigated in terms of the treatment of landfill leachate with ratio of BOD5/COD in the range of 0.22 to 0.24. The modification of Fenton and photo-Fenton processes consisted in the inclusion of precipitation and separation of humic substances at pH 3. Due to the precipitation, the value of COD decreased by 39% and BOD5by 7.1%. The modification of the processes allowed us to improve the efficiency and to decrease the doses of reagents necessary to continue the process. Modified photo-Fenton process proved to be the most effective (92.7% COD removal) of all processes investigated. Additionally, modified-Fenton process was much more effective than the other two processes when compared up to 120 min, while after longer times it gave the least satisfactory results. After 30 min of modified-Fenton process BOD5/COD ratio increased to 0.43. The parameter referred to as “efficiency of oxidants” was used to estimate the efficiency of all the processes—its value varied from 178 to 239%. Various substances including phthalates, hydrocarbons, silanes, and siloxanes were identified in raw and treated leachate.


2017 ◽  
Vol 40 (6) ◽  
pp. 730-741 ◽  
Author(s):  
Ana Paula Jambers Scandelai ◽  
Eliane Sloboda Rigobello ◽  
Beatriz Lopes Corso de Oliveira ◽  
Célia Regina Granhen Tavares

2017 ◽  
Vol 5 (6) ◽  
pp. 6188-6193 ◽  
Author(s):  
Cláudia Regina Klauck ◽  
Alexandre Giacobbo ◽  
Erlon Diego Lorenz de Oliveira ◽  
Luciano Basso da Silva ◽  
Marco Antônio Siqueira Rodrigues

2018 ◽  
Vol 45 ◽  
pp. 00046
Author(s):  
Jacek Leszczyński ◽  
Jolanta Walery Maria

In this study, the application of ozonation and ozonation with hydrogen peroxide processes for landfill leachate treatment was investigated. The effluents were characterized by COD 710 mgO2/dm3 and BOD5 72 mg O2/dm3. According to the adopted indicators, the determined BOD/COD ratio of 0.1 in raw leachates indicates a stabilized landfill. Ozone was applied at doses of 0.15 - 0.6 gO3/dm3, and hydrogen peroxide at such doses to keep the weight ratios of H2O2/O3 0.4 - 1.6. The maximum COD and UV absorbance removal was respectively 29% and 51% by applying a high ozone dose of 0.6 gO3/dm3. After oxidation, the ratio of BOD/COD was increased from 0.1 up to 0.3. It has been shown that by using hydrogen peroxide in ozonation, organic compounds expressed as COD can be efficiently removed from the effluents. The best conditions for the H2O2/O3 process were obtained with a H2O2/O3 ratio of 0.8 and ozone dose of 0.6 gO3/dm3. Under these conditions, the removal efficiency of COD was 46%.


2021 ◽  
Vol 43 (7) ◽  
pp. 504-512
Author(s):  
Sri Martini ◽  
Sharmeen Afroze ◽  
Mira Setiawati

Objectives : This comparative study investigated various methods of advanced oxidation processes (AOPs) that were separately conducted for treating raw petroleum refinery effluent regarding chemical oxygen demand (COD) removal.Methods : Fenton, photo-Fenton, TiO2, ZnO, TiO2/Ultra violet (UV), and ZnO/UV were performed individually for measuring the effect of light irradiation, treatment time, pH, catalysts dosage, and light source on the profile of COD values.Results and Discussion : The experimental data of this work showed that the dependency on the light exposure in heterogeneous photo-catalytic reaction using TiO2 and ZnO is higher than that of homogeneous photo-Fenton technique. The optimum operating conditions in heterogeneous system occurred at 100 min of oxidation time, pH 5, and catalyst dosage 1 g/L that resulted in 21.8, 20.68, 60.9, and 55.17% of COD removal for TiO2, ZnO, TiO2/UV, and ZnO/UV, respectively. In contrast, both Fenton and photo-Fenton experienced their highest performance at pH 4 by obtaining 44.2 and 59.77% of COD removal, respectively. Eventually, kinetic study indicated that COD degradation can be well expressed by second-order pattern that reached higher correlation coefficient values by 0.999 and 0.998 for TiO2/UV and TiO2, respectively.Conclusions : Overall, it could be assumed that AOPs are reliable techniques to purify raw and complex raw industrial effluents.


Sign in / Sign up

Export Citation Format

Share Document