Identification of organic compounds in landfill leachate treated by advanced oxidation processes

2017 ◽  
Vol 40 (6) ◽  
pp. 730-741 ◽  
Author(s):  
Ana Paula Jambers Scandelai ◽  
Eliane Sloboda Rigobello ◽  
Beatriz Lopes Corso de Oliveira ◽  
Célia Regina Granhen Tavares
2018 ◽  
Vol 45 ◽  
pp. 00046
Author(s):  
Jacek Leszczyński ◽  
Jolanta Walery Maria

In this study, the application of ozonation and ozonation with hydrogen peroxide processes for landfill leachate treatment was investigated. The effluents were characterized by COD 710 mgO2/dm3 and BOD5 72 mg O2/dm3. According to the adopted indicators, the determined BOD/COD ratio of 0.1 in raw leachates indicates a stabilized landfill. Ozone was applied at doses of 0.15 - 0.6 gO3/dm3, and hydrogen peroxide at such doses to keep the weight ratios of H2O2/O3 0.4 - 1.6. The maximum COD and UV absorbance removal was respectively 29% and 51% by applying a high ozone dose of 0.6 gO3/dm3. After oxidation, the ratio of BOD/COD was increased from 0.1 up to 0.3. It has been shown that by using hydrogen peroxide in ozonation, organic compounds expressed as COD can be efficiently removed from the effluents. The best conditions for the H2O2/O3 process were obtained with a H2O2/O3 ratio of 0.8 and ozone dose of 0.6 gO3/dm3. Under these conditions, the removal efficiency of COD was 46%.


2004 ◽  
Vol 49 (4) ◽  
pp. 273-277 ◽  
Author(s):  
B. Slomczynska ◽  
J. Wasowski ◽  
T. Slomczynski

The aim of the present study was to assess the effect of advanced oxidation processes (AOPs) (oxidation ozone and peroxide/ozone) on the toxicity of leachates from municipal landfill for Warsaw, Poland, using a battery of tests. AOPs used to pre-treat leachates were carried out in laboratory conditions after their coagulation with the use of FeCl3. The effects of the pre-treatment of leachates using the method of coagulation with FeCl3 depended on the concentration of organic compounds and with optimal conditions of the process ranged from 40 to 70%. Further pre-treatment of the leachates after coagulation, involving the use of oxidation with O3 and H2O2/O3, did not cause significant decrease of leachate toxicity. The data of this study demonstrated the usefulness of the battery of tests using Daphnia magna, Artemia franciscana, Scenedesmus quadricauda and Vibrio fischeri for the toxicity evaluation of raw and pre-treated leachates.


2017 ◽  
Vol 5 (6) ◽  
pp. 6188-6193 ◽  
Author(s):  
Cláudia Regina Klauck ◽  
Alexandre Giacobbo ◽  
Erlon Diego Lorenz de Oliveira ◽  
Luciano Basso da Silva ◽  
Marco Antônio Siqueira Rodrigues

2013 ◽  
Vol 39 (2) ◽  
pp. 107-115 ◽  
Author(s):  
Barbara Pieczykolan ◽  
Izabela Płonka ◽  
Krzysztof Barbusiński ◽  
Magdalena Amalio-Kosel

Abstract Treatment of leachate from an exploited since 2004 landfill by using two methods of advanced oxidation processes was performed. Fenton’s reagent with two different doses of hydrogen peroxide and iron and UV/H2O2 process was applied. The removal efficiency of biochemically oxidizable organic compounds (BOD5), chemically oxidizable compounds using potassium dichromate (CODCr) and nutrient (nitrogen and phosphorus) was examined. Studies have shown that the greatest degree of organic compounds removal expressed as a BOD5 index and CODCr index were obtained when Fenton’s reagent with greater dose of hydrogen peroxide was used - efficiency was respectively 72.0% and 69.8%. Moreover, in this case there was observed an increase in the value of ratio of BOD5/CODCr in treated leachate in comparison with raw leachate. Application of Fenton’s reagent for leachate treatment also allowed for more effective removal of nutrients in comparison with the UV/H2O2 process.


Sign in / Sign up

Export Citation Format

Share Document