scholarly journals Automated crater detection on Mars using deep learning

2019 ◽  
Vol 170 ◽  
pp. 16-28 ◽  
Author(s):  
Christopher Lee
2021 ◽  
Vol 13 (11) ◽  
pp. 2116
Author(s):  
Chia-Yu Hsu ◽  
Wenwen Li ◽  
Sizhe Wang

This paper introduces a new GeoAI solution to support automated mapping of global craters on the Mars surface. Traditional crater detection algorithms suffer from the limitation of working only in a semiautomated or multi-stage manner, and most were developed to handle a specific dataset in a small subarea of Mars’ surface, hindering their transferability for global crater detection. As an alternative, we propose a GeoAI solution based on deep learning to tackle this problem effectively. Three innovative features are integrated into our object detection pipeline: (1) a feature pyramid network is leveraged to generate feature maps with rich semantics across multiple object scales; (2) prior geospatial knowledge based on the Hough transform is integrated to enable more accurate localization of potential craters; and (3) a scale-aware classifier is adopted to increase the prediction accuracy of both large and small crater instances. The results show that the proposed strategies bring a significant increase in crater detection performance than the popular Faster R-CNN model. The integration of geospatial domain knowledge into the data-driven analytics moves GeoAI research up to the next level to enable knowledge-driven GeoAI. This research can be applied to a wide variety of object detection and image analysis tasks.


2021 ◽  
Vol 13 (14) ◽  
pp. 2819
Author(s):  
Sudong Zang ◽  
Lingli Mu ◽  
Lina Xian ◽  
Wei Zhang

Lunar craters are very important for estimating the geological age of the Moon, studying the evolution of the Moon, and for landing site selection. Due to a lack of labeled samples, processing times due to high-resolution imagery, the small number of suitable detection models, and the influence of solar illumination, Crater Detection Algorithms (CDAs) based on Digital Orthophoto Maps (DOMs) have not yet been well-developed. In this paper, a large number of training data are labeled manually in the Highland and Maria regions, using the Chang’E-2 (CE-2) DOM; however, the labeled data cannot cover all kinds of crater types. To solve the problem of small crater detection, a new crater detection model (Crater R-CNN) is proposed, which can effectively extract the spatial and semantic information of craters from DOM data. As incomplete labeled samples are not conducive for model training, the Two-Teachers Self-training with Noise (TTSN) method is used to train the Crater R-CNN model, thus constructing a new model—called Crater R-CNN with TTSN—which can achieve state-of-the-art performance. To evaluate the accuracy of the model, three other detection models (Mask R-CNN, no-Mask R-CNN, and Crater R-CNN) based on semi-supervised deep learning were used to detect craters in the Highland and Maria regions. The results indicate that Crater R-CNN with TTSN achieved the highest precision (of 91.4% and 88.5%, respectively) in the Highland and Maria regions, even obtaining the highest recall and F1 score. Compared with Mask R-CNN, no-Mask R-CNN, and Crater R-CNN, Crater R-CNN with TTSN had strong robustness and better generalization ability for crater detection within 1 km in different terrains, making it possible to detect small craters with high accuracy when using DOM data.


2021 ◽  
Vol 1 (1) ◽  
pp. 49-63
Author(s):  
Haingja Seo ◽  
Dongyoung Kim ◽  
Sang-Min Park ◽  
Myungjin Choi

Author(s):  
Stellan Ohlsson
Keyword(s):  

2019 ◽  
Vol 53 (3) ◽  
pp. 281-294
Author(s):  
Jean-Michel Foucart ◽  
Augustin Chavanne ◽  
Jérôme Bourriau

Nombreux sont les apports envisagés de l’Intelligence Artificielle (IA) en médecine. En orthodontie, plusieurs solutions automatisées sont disponibles depuis quelques années en imagerie par rayons X (analyse céphalométrique automatisée, analyse automatisée des voies aériennes) ou depuis quelques mois (analyse automatique des modèles numériques, set-up automatisé; CS Model +, Carestream Dental™). L’objectif de cette étude, en deux parties, est d’évaluer la fiabilité de l’analyse automatisée des modèles tant au niveau de leur numérisation que de leur segmentation. La comparaison des résultats d’analyse des modèles obtenus automatiquement et par l’intermédiaire de plusieurs orthodontistes démontre la fiabilité de l’analyse automatique; l’erreur de mesure oscillant, in fine, entre 0,08 et 1,04 mm, ce qui est non significatif et comparable avec les erreurs de mesures inter-observateurs rapportées dans la littérature. Ces résultats ouvrent ainsi de nouvelles perspectives quand à l’apport de l’IA en Orthodontie qui, basée sur le deep learning et le big data, devrait permettre, à moyen terme, d’évoluer vers une orthodontie plus préventive et plus prédictive.


Sign in / Sign up

Export Citation Format

Share Document