scholarly journals Deep Learning Crater Detection for Lunar Terrain Relative Navigation

Author(s):  
Lena Downes ◽  
Ted J. Steiner ◽  
Jonathan P. How
2021 ◽  
Vol 6 (55) ◽  
pp. eabf3320
Author(s):  
Anthony T. Fragoso ◽  
Connor T. Lee ◽  
Austin S. McCoy ◽  
Soon-Jo Chung

Visual terrain-relative navigation (VTRN) is a localization method based on registering a source image taken from a robotic vehicle against a georeferenced target image. With high-resolution imagery databases of Earth and other planets now available, VTRN offers accurate, drift-free navigation for air and space robots even in the absence of external positioning signals. Despite its potential for high accuracy, however, VTRN remains extremely fragile to common and predictable seasonal effects, such as lighting, vegetation changes, and snow cover. Engineered registration algorithms are mature and have provable geometric advantages but cannot accommodate the content changes caused by seasonal effects and have poor matching skill. Approaches based on deep learning can accommodate image content changes but produce opaque position estimates that either lack an interpretable uncertainty or require tedious human annotation. In this work, we address these issues with targeted use of deep learning within an image transform architecture, which converts seasonal imagery to a stable, invariant domain that can be used by conventional algorithms without modification. Our transform preserves the geometric structure and uncertainty estimates of legacy approaches and demonstrates superior performance under extreme seasonal changes while also being easy to train and highly generalizable. We show that classical registration methods perform exceptionally well for robotic visual navigation when stabilized with the proposed architecture and are able to consistently anticipate reliable imagery. Gross mismatches were nearly eliminated in challenging and realistic visual navigation tasks that also included topographic and perspective effects.


2021 ◽  
Vol 13 (11) ◽  
pp. 2116
Author(s):  
Chia-Yu Hsu ◽  
Wenwen Li ◽  
Sizhe Wang

This paper introduces a new GeoAI solution to support automated mapping of global craters on the Mars surface. Traditional crater detection algorithms suffer from the limitation of working only in a semiautomated or multi-stage manner, and most were developed to handle a specific dataset in a small subarea of Mars’ surface, hindering their transferability for global crater detection. As an alternative, we propose a GeoAI solution based on deep learning to tackle this problem effectively. Three innovative features are integrated into our object detection pipeline: (1) a feature pyramid network is leveraged to generate feature maps with rich semantics across multiple object scales; (2) prior geospatial knowledge based on the Hough transform is integrated to enable more accurate localization of potential craters; and (3) a scale-aware classifier is adopted to increase the prediction accuracy of both large and small crater instances. The results show that the proposed strategies bring a significant increase in crater detection performance than the popular Faster R-CNN model. The integration of geospatial domain knowledge into the data-driven analytics moves GeoAI research up to the next level to enable knowledge-driven GeoAI. This research can be applied to a wide variety of object detection and image analysis tasks.


2021 ◽  
Vol 13 (14) ◽  
pp. 2819
Author(s):  
Sudong Zang ◽  
Lingli Mu ◽  
Lina Xian ◽  
Wei Zhang

Lunar craters are very important for estimating the geological age of the Moon, studying the evolution of the Moon, and for landing site selection. Due to a lack of labeled samples, processing times due to high-resolution imagery, the small number of suitable detection models, and the influence of solar illumination, Crater Detection Algorithms (CDAs) based on Digital Orthophoto Maps (DOMs) have not yet been well-developed. In this paper, a large number of training data are labeled manually in the Highland and Maria regions, using the Chang’E-2 (CE-2) DOM; however, the labeled data cannot cover all kinds of crater types. To solve the problem of small crater detection, a new crater detection model (Crater R-CNN) is proposed, which can effectively extract the spatial and semantic information of craters from DOM data. As incomplete labeled samples are not conducive for model training, the Two-Teachers Self-training with Noise (TTSN) method is used to train the Crater R-CNN model, thus constructing a new model—called Crater R-CNN with TTSN—which can achieve state-of-the-art performance. To evaluate the accuracy of the model, three other detection models (Mask R-CNN, no-Mask R-CNN, and Crater R-CNN) based on semi-supervised deep learning were used to detect craters in the Highland and Maria regions. The results indicate that Crater R-CNN with TTSN achieved the highest precision (of 91.4% and 88.5%, respectively) in the Highland and Maria regions, even obtaining the highest recall and F1 score. Compared with Mask R-CNN, no-Mask R-CNN, and Crater R-CNN, Crater R-CNN with TTSN had strong robustness and better generalization ability for crater detection within 1 km in different terrains, making it possible to detect small craters with high accuracy when using DOM data.


Author(s):  
Svenja Woicke ◽  
Andres Moreno Gonzalez ◽  
Isabelle El- Hajj ◽  
Jelle Mes ◽  
Martin Henkel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document