high resolution imagery
Recently Published Documents


TOTAL DOCUMENTS

475
(FIVE YEARS 162)

H-INDEX

35
(FIVE YEARS 7)

MAUSAM ◽  
2021 ◽  
Vol 42 (2) ◽  
pp. 187-194
Author(s):  
D. S. UPADHYAY ◽  
D. K. MISHRA ◽  
A. P. JOHRI ◽  
A. K. SRIVASTAVA

This paper aims at evolving a conceptual technique for the computation of water yield from the basin snow cover. It may serve as a useful information to compute the snowmelt driven run-off particularly in the lean summer season. For this purpose, the measurement of snow cover area in catchment of Satluj river using very high resolution imagery received from the meteorological satellite NOAA-9 was undertaken on selected dates during the periods, (i) October 1985 to May 1986, and (ii) January to June 1987. The computed snowmelt water yield have been compared with the available actual run-off data. The study shows that the satellite derived snow cover data are potentially useful in predicting the snowmelt run-off. The importance of this technique is further enhanced for the large watersheds over Himalayas where ground based measurements are too scanty.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2578
Author(s):  
Marcelo Rodrigues Barbosa Júnior ◽  
Danilo Tedesco ◽  
Rafael de Graaf Corrêa ◽  
Bruno Rafael de Almeida Moreira ◽  
Rouverson Pereira da Silva ◽  
...  

Imagery data prove useful for mapping gaps in sugarcane. However, if the quality of data is poor or the moment of flying an aerial platform is not compatible to phenology, prediction becomes rather inaccurate. Therefore, we analyzed how the combination of pixel size (3.5, 6.0 and 8.2 cm) and height of plant (0.5, 0.9, 1.0, 1.2 and 1.7 m) could impact the mapping of gaps on unmanned aerial vehicle (UAV) RGB imagery. Both factors significantly influenced mapping. The larger the pixel or plant, the less accurate the prediction. Error was more likely to occur for regions on the field where actively growing vegetation overlapped at gaps of 0.5 m. Hence, even 3.5 cm pixel did not capture them. Overall, pixels of 3.5 cm and plants of 0.5 m outstripped other combinations, making it the most accurate (absolute error ~0.015 m) solution for remote mapping on the field. Our insights are timely and provide forward knowledge that is particularly relevant to progress in the field’s prominence of flying a UAV to map gaps. They will enable producers to make decisions on replanting and fertilizing site-specific high-resolution imagery data.


2021 ◽  
Vol 13 (22) ◽  
pp. 4692
Author(s):  
Emma Gairin ◽  
Antoine Collin ◽  
Dorothée James ◽  
Tehani Maueau ◽  
Yoann Roncin ◽  
...  

Coastal urbanisation is a widespread phenomenon throughout the world and is often linked to increased erosion. Small Pacific islands are not spared from this issue, which is of great importance in the context of climate change. The French Polynesian island of Bora Bora was used as a case study to investigate the historical evolution of its coastline classification and position from 1955 to 2019. A time series of very high-resolution aerial imagery was processed to highlight the changes of the island’s coastline. The overall length of natural shores, including beaches, decreased by 46% from 1955 to 2019 while human-made shores such as seawalls increased by 476%, and as of 2019 represented 61% of the coastline. This evolution alters sedimentary processes: the time series of aerial images highlights increased erosion in the vicinity of seawalls and embankments, leading to the incremental need to construct additional walls. In addition, the gradual removal of natural shoreline types modifies landscapes and may negatively impact marine biodiversity. Through documenting coastal changes to Bora Bora over time, this study highlights the impacts of human-made structures on erosional processes and underscores the need for sustainable coastal management plans in French Polynesia.


2021 ◽  
Vol 15 (11) ◽  
pp. 5115-5132
Author(s):  
Rajashree Tri Datta ◽  
Bert Wouters

Abstract. We introduce an algorithm (Watta) which automatically calculates supraglacial lake bathymetry and detects potential ice layers along tracks of the ICESat-2 (Ice, Cloud, and Land Elevation Satellite) laser altimeter. Watta uses photon heights estimated by the ICESat-2 ATL03 product and extracts supraglacial lake surface, bottom, and depth corrected for refraction and (sub-)surface ice cover in addition to producing surface heights at the native resolution of the ATL03 photon cloud. These measurements are used to constrain empirical estimates of lake depth from satellite imagery, which were thus far dependent on sparse sets of in situ measurements for calibration. Imagery sources include Landsat 8 Operational Land Imager (OLI), Sentinel-2, and high-resolution Planet Labs PlanetScope and SkySat data, used here for the first time to calculate supraglacial lake depths. The Watta algorithm was developed and tested using a set of 46 lakes near Sermeq Kujalleq (Jakobshavn) glacier in western Greenland, and we use multiple imagery sources (available for 45 of these lakes) to assess the use of the red vs. green band to extrapolate depths along a profile to full lake volumes. We use Watta-derived estimates in conjunction with high-resolution imagery from both satellite-based sources (tasked over the season) and nearly simultaneous Operation IceBridge CAMBOT (Continuous Airborne Mapping By Optical Translator) imagery (on a single airborne flight) for a focused study of the drainage of a single lake over the 2019 melt season. Our results suggest that the use of multiple imagery sources (both publicly available and commercial), in combination with altimetry-based depths, can move towards capturing the evolution of supraglacial hydrology at improved spatial and temporal scales.


2021 ◽  
Vol 24 (3) ◽  
pp. 1-40
Author(s):  
Mathias-Felipe de-Lima-Santos ◽  
Ramón Salaverría

Journalism is at a radical point of change that requires organizations to come up with new ideas and formats for news reporting. Additionally, the notable surge of data, sensors and technological advances in the mobile segment has brought immeasurable benefits to many fields of journalistic practice (data journalism in particular). Given the relative novelty and complexity of implementing artificial intelligence (AI) in journalism, few areas have managed to deploy tailored AI solutions in the media industry. In this study, through a mixed-method approach that combines both participant observations and interviews, we explain the hurdles and obstacles to deploying computer vision news projects, a subset of AI, in a leading Latin American news organization, the Argentine newspaper La Nación. Our results highlight four broad difficulties in implementing computer vision projects that involve satellite imagery: a lack of high-resolution imagery, the unavailability of technological infrastructure, the absence of qualified personnel to develop such codes, and a lengthy and costly implementation process that requires significant investment. This article concludes with a discussion of the centrality of AI solutions in the hands of big tech corporations.


2021 ◽  
pp. 1-33
Author(s):  
Jovanka Špirić ◽  
Ana Edith Merlo Reyes ◽  
Ma. Liliana Ávalos Rodríguez ◽  
M. Isabel Ramírez

In 2010, the Mexican National Forestry Commission (Spanish acronym CONAFOR) implemented REDD+ early action activities in priority states, including Campeche. This article explores the impact of the forestry programs promoted under REDD+ on the diversification of household activities, benefit-sharing among local groups, and forest cover changes in two local communities in Campeche. It examines whether the design and implementation of these programs responded to local aspirations for equity and rural development by combining ethnographic and documental methods. In addition, it quantifies land-cover change (2013-2018) using high-resolution imagery and spatial analysis. It found no intracommunity equity or sustainable activity diversification resulting from the REDD+ implementation. Deforestation for livestock and agricultural mechanization was the dominant process observed both in dense and open forests. Although it has not made the situation worse, REDD+ has yet to provide social benefits for these two communities. To be considered a viable option locally, the program design under REDD+ must combine the implementation of several sustainable productive activities over a longer period and provide net monetary benefits to all local groups.


Author(s):  
Emma Gairin ◽  
Antoine Collin ◽  
Dorothée James ◽  
Tehani Maueau ◽  
Yoann Roncin ◽  
...  

Coastal urbanisation is a widespread phenomenon throughout the world and is often linked to increased erosion. Small Pacific islands are not spared from this issue, which is of great importance in the context of climate change. The French Polynesian island of Bora Bora was used as a case study to investigate the historical evolution of its coastline classification and position from 1955 to 2019. A time series of very-high-resolution aerial imagery was processed to highlight the changes of the island’s coastline. The overall length of natural shores, including beaches, decreased by 46% from 1955 to 2019 while man-made shores such as seawalls increased by 476%, and as of 2019 represented 61% of the coastline. This evolution alters sedimentary processes: the time series of aerial images highlights increased erosion in the vicinity of seawalls and embankments, leading to the incremental need to construct additional walls. In addition, the gradual removal of natural shoreline types modifies landscapes and may negatively impact marine biodiversity. Through documenting coastal changes on Bora Bora through time, this study highlights the impacts of man-made structures on erosional processes and underscores the need for sustainable coastal management plans in French Polynesia.


2021 ◽  
Vol 13 (21) ◽  
pp. 4215
Author(s):  
Steven R. Schill ◽  
Valerie Pietsch McNulty ◽  
F. Joseph Pollock ◽  
Fritjof Lüthje ◽  
Jiwei Li ◽  
...  

High-resolution benthic habitat data fill an important knowledge gap for many areas of the world and are essential for strategic marine conservation planning and implementing effective resource management. Many countries lack the resources and capacity to create these products, which has hindered the development of accurate ecological baselines for assessing protection needs for coastal and marine habitats and monitoring change to guide adaptive management actions. The PlanetScope (PS) Dove Classic SmallSat constellation delivers high-resolution imagery (4 m) and near-daily global coverage that facilitates the compilation of a cloud-free and optimal water column image composite of the Caribbean’s nearshore environment. These data were used to develop a first-of-its-kind regional thirteen-class benthic habitat map to 30 m water depth using an object-based image analysis (OBIA) approach. A total of 203,676 km2 of shallow benthic habitat across the Insular Caribbean was mapped, representing 5% coral reef, 43% seagrass, 15% hardbottom, and 37% other habitats. Results from a combined major class accuracy assessment yielded an overall accuracy of 80% with a standard error of less than 1% yielding a confidence interval of 78%–82%. Of the total area mapped, 15% of these habitats (31,311.7 km2) are within a marine protected or managed area. This information provides a baseline of ecological data for developing and executing more strategic conservation actions, including implementing more effective marine spatial plans, prioritizing and improving marine protected area design, monitoring condition and change for post-storm damage assessments, and providing more accurate habitat data for ecosystem service models.


2021 ◽  
Vol 13 (20) ◽  
pp. 4042
Author(s):  
Marina Leibman ◽  
Alexander Kizyakov ◽  
Yekaterina Zhdanova ◽  
Anton Sonyushkin ◽  
Mikhail Zimin

Thermodenudation on the Kara seacoast, the Yugorsky Peninsula, Russia, is studied by analyzing remote-sensing data. Landforms resulting from the thaw of tabular ground ice, referred to as thermocirques, are formed due to polycyclic retrogressive thaw slumps, during the last decade 2010–2020. We calculate the retreat rate of the thermocirque edge using various statistical approaches. We compared thermocirque outlines by the end of each time interval defined by the dates of available very-high-resolution imagery. Six thermocirques within two key sites on the Yugorsky peninsula are monitored. We correlate each of the thermocirque edge’s retreat rates to various climatic parameters obtained at the Amderma weather station to understand the interrelation patterns better. As a result, we find a very low correlation between the retreat rate of each thermocirque and summer warmth, rainfall, and wave action. In general, the activity of thermodenudation decreases in time from the previous decade (2001–2010) to 2010–2020, and from 2010 towards 2020, although the summer warmth trend increases dramatically. A single thermocirque or series of thermocirques expand in response to environmental and geological factors in coastal retreat caused by thermodenudation.


Sign in / Sign up

Export Citation Format

Share Document