The contribution of tectonics to relative sea-level change during the Holocene in coastal south-eastern Sicily: New data from boreholes

2011 ◽  
Vol 232 (1-2) ◽  
pp. 214-227 ◽  
Author(s):  
C.R. Spampinato ◽  
B. Costa ◽  
A. Di Stefano ◽  
C. Monaco ◽  
G. Scicchitano
2008 ◽  
Vol 70 (1) ◽  
pp. 26-39 ◽  
Author(s):  
Giovanni Scicchitano ◽  
Fabrizio Antonioli ◽  
Elena Flavia Castagnino Berlinghieri ◽  
Andrea Dutton ◽  
Carmelo Monaco

AbstractPrecise measurements of submerged archaeological markers in the Siracusa coast (Southeastern Sicily, Italy) provide new data on relative sea-level change during the late Holocene. Four submerged archaeological sites have been studied and investigated through direct observations. Two of them are Greek archaic in age (2.5–2.7 ka) and are now 0.98–1.48 m below sea level; the other two developed during the Bronze age (3.2–3.8 ka) and are now 1.03–1.97 m below sea level. These archaeological data have been integrated with information derived from a submerged speleothem collected in a cave located along the Siracusa coast at − 20 m depth. The positions of the archaeological markers have been measured with respect to present sea level, corrected for tide and pressure at the time of surveys. These data were compared with predicted sea-level rise curves for the Holocene using a glacio-hydro-isostatic model. The comparison with the curve for the southeastern Sicily coast yields a tectonic component of relative sea-level change related to regional uplift. Uplift rates between 0.3 and 0.8 mm/yr have been estimated.


2020 ◽  
Author(s):  
Nicole Khan ◽  
Erica Ashe ◽  
Robert Kopp ◽  
Ben Horton ◽  

<p>Determining the rates, mechanisms and geographic variability of sea-level change is a priority science question for the next decade of ocean research. To address these research priorities, the HOLocene SEA-level variability (HOLSEA) working group is developing the first standardized global synthesis of Holocene relative sea-level data to: (1) estimate the magnitudes and rates of global mean sea-level change during the Holocene; and (2) identify trends in spatial variability and decipher the processes responsible for geographic differences in relative sea-level change.</p><p>Here we present the efforts of the working group to compile the database, which includes over 12,000 sea-level index points and limiting data from a range of different indicators across seven continents from the Last Glacial Maximum to present. We follow a standard protocol that incorporates full consideration of vertical and temporal uncertainty for each sea-level index point, including uncertainties associated with the relationship of each indicator to past sea-level and the methods used to date each indicator. We highlight important challenges overcome to aggregate the standardized global synthesis, and discuss those that still remain. Finally. we apply a spatio-temporal empirical hierarchical statistical model to the database to estimate global sea-level variability and spatial patterns in relative sea level and its rates of change, and consider their driving mechanisms. Long-term, this effort will enhance predictions of 21st century sea-level rise, and provide a vital contribution to the assessment of natural hazards with respect to sea-level rise.</p>


2011 ◽  
Vol 26 (7) ◽  
pp. 768-768
Author(s):  
M. J. Roberts ◽  
J. D. Scourse ◽  
J. D. Bennell ◽  
D. G. Huws ◽  
C. F. Jago ◽  
...  

2008 ◽  
Vol 23 (5) ◽  
pp. 415-433 ◽  
Author(s):  
Anthony C. Massey ◽  
W. Roland Gehrels ◽  
Dan J. Charman ◽  
Glenn A. Milne ◽  
W. Richard Peltier ◽  
...  

2001 ◽  
Vol 38 (7) ◽  
pp. 1081-1092 ◽  
Author(s):  
Gail L Chmura ◽  
Laurie L Helmer ◽  
C Beth Beecher ◽  
Elsie M Sunderland

We examine rates of salt marsh accumulation in three marshes of the outer Bay of Fundy. At each marsh we selected a site in the high marsh with similar vegetation, and thus similar elevation. Accretion rates were estimated by 137Cs, 210Pb, and pollen stratigraphy to estimate rates of change over periods of 30, 100, and ~170 years, respectively. These rates are compared with records from the two closest tide gauges (Saint John, New Brunswick, and Eastport, Maine) to assess the balance of recent marsh accretion and sea-level change. Averaged marsh accretion rates have ranged from 1.3 ± 0.4 to 4.4 ± 1.6 mm·year–1 over the last two centuries. Recent rates are similar to the rate of sea-level change recorded at Eastport, Maine, suggesting that they are in step with recent sea-level change but very sensitive to short-term variation in relative sea level. Based on the pollen stratigraphy in the marsh sediments, the marsh accretion rate was higher during the late 18th to early 19th century. Higher rates probably were due to local increases in relative sea level as a result of neotectonic activity and may have been enhanced by increased sediment deposition through ice rafting.


Sign in / Sign up

Export Citation Format

Share Document