Climate variability in the North American Tropics: a full glacial cycle from western central Mexico (Sayula Basin)

2012 ◽  
Vol 279-280 ◽  
pp. 324-325
Author(s):  
Sarah Metcalfe
1996 ◽  
Vol 22 ◽  
pp. 75-84 ◽  
Author(s):  
G. S. Boulton

A theory of erosion and deposition as a consequence of subglacial sediment deformation over beds of unlithified sediment is reviewed and applied to large-scale till sequences formed on the southern flanks of the North American and British and European ice sheets during the last glacial cycle. The distribution of till thickness, till lithology in relation to source materials and intra-till erosion surfaces along a flowline in the Michigan lobe of the North American ice sheet are shown to be compatible with the deformational theory but not with other modes of till genesis. It is then demonstrated, in the case of the British ice sheet, how the assumption of a deformational origin for tills can be used to infer time-dependent patterns of ice-sheet dynamic behaviour. By reference to an example from the Netherlands, it is argued that many till sequences interpreted as melt-out tills are more likely to have formed by subglacial sediment deformation.


1994 ◽  
Vol 42 (4) ◽  
pp. 543 ◽  
Author(s):  
GIH Kerley ◽  
WG Whitford

Deserts are, by definition, environmentally similar, and this has lead to hypotheses of convergence in the properties of desert biotic communities as well as the components of these communities. There is considerable evidence for convergence in some characteristics of desert biota, ranging from plant growth forms to the well-known bipedal, nocturnal rodents. One area that has received considerable attention has been granivory by desert rodents, largely because of the effort focused on the North American desert heteromyids, and also because the process of granivory has far-reaching ramifications for desert plant communities. Specific tests for convergence in the impact of rodents as granivores, by means of bait-removal experiments, however, have shown that the high levels of seed removal by rodents in the North American deserts differs from that of rodents in the South American, Australian and South African deserts, where ants are the most important seed harvesters. The only studies to measure the impact of rodents on desert seed fluxes confirm these patterns, with rodents consuming up to 86% of seed production in North American deserts, but less than 1% of seed production in South African deserts. A review of dietary data for desert rodents confirms these trends, with little evidence for the presence of granivores in deserts besides those of North America. A variety of hypotheses have attempted to explain these variations in desert rodent granivory. These include recent extinctions of granivores, that seed burial, low soil nutrients and/or limiting seed production prevented the radiation of granivorous small mammals, and that particular deserts are too young or too recently colonised by rodents for granivorous rodents to have evolved. However, none of these hypotheses are supported by available evidence. Alternative hypotheses suggesting that climate variability may have precluded the development of specialised granivores need to be tested. In particular, more data are needed to confirm these patterns of granivory, and gain an understanding of the effects of Pleistocene and recent desert climate variability on seed production. An alternative perspective suggests that the presence of the heteromyid rodents may explain the high levels of granivory by small mammals in North American deserts. The variability in granivory by small mammals between deserts suggests that deserts will also differ in terms of anti-granivore adaptations of plants, seed fluxes and the mechanisms whereby small mammals coexist.


2016 ◽  
Vol 29 (2) ◽  
pp. 142 ◽  
Author(s):  
Guadalupe Munguía-Lino ◽  
Tania Escalante ◽  
Juan J. Morrone ◽  
Aarón Rodríguez

The tribe Tigridieae (Iridoideae: Iridaceae) is a New World group with centres of diversity in Mexico and Andean South America. North America harbours 67 of the 172 species recognised within the tribe, 54 being endemic. Our aims were to identify areas of endemism of the North American Tigridieae using endemicity analysis (EA) and to infer their relationships using parsimony analysis of endemicity (PAE). A data matrix with 2769 geographical records of Tigridieae was analysed. The EA allowed to identify six consensus areas of endemism in Mexico. The PAE resulted in one cladogram with four clades and the following five biotic components: northern Mexico, western Mexico, central Mexico, southern Mexico and central–southern Mexico. The richness analysis of these areas of endemism indicated that the greatest concentration of species is located in central Mexico, with 14 species in one grid-cell. Grid-cells with 12 species each were identified in low western Mexico, high western Mexico, southern Mexico and central–southern Mexico. This last area is characterised by the greatest endemism, including nine species. The formation of the Transmexican Volcanic Belt seems to have been a key element to explain the diversification of North American Tigridieae.


PAGES news ◽  
2002 ◽  
Vol 10 (1) ◽  
pp. 9-10 ◽  
Author(s):  
Franco Biondi

1996 ◽  
Vol 22 ◽  
pp. 75-84 ◽  
Author(s):  
G. S. Boulton

A theory of erosion and deposition as a consequence of subglacial sediment deformation over beds of unlithified sediment is reviewed and applied to large-scale till sequences formed on the southern flanks of the North American and British and European ice sheets during the last glacial cycle. The distribution of till thickness, till lithology in relation to source materials and intra-till erosion surfaces along a flowline in the Michigan lobe of the North American ice sheet are shown to be compatible with the deformational theory but not with other modes of till genesis. It is then demonstrated, in the case of the British ice sheet, how the assumption of a deformational origin for tills can be used to infer time-dependent patterns of ice-sheet dynamic behaviour. By reference to an example from the Netherlands, it is argued that many till sequences interpreted as melt-out tills are more likely to have formed by subglacial sediment deformation.


2006 ◽  
Vol 10 (17) ◽  
pp. 1-27 ◽  
Author(s):  
Weile Wang ◽  
Bruce T. Anderson ◽  
Nathan Phillips ◽  
Robert K. Kaufmann ◽  
Christopher Potter ◽  
...  

Abstract Feedbacks of vegetation on summertime climate variability over the North American Grasslands are analyzed using the statistical technique of Granger causality. Results indicate that normalized difference vegetation index (NDVI) anomalies early in the growing season have a statistically measurable effect on precipitation and surface temperature later in summer. In particular, higher means and/or decreasing trends of NDVI anomalies tend to be followed by lower rainfall but higher temperatures during July through September. These results suggest that initially enhanced vegetation may deplete soil moisture faster than normal and thereby induce drier and warmer climate anomalies via the strong soil moisture–precipitation coupling in these regions. Consistent with this soil moisture–precipitation feedback mechanism, interactions between temperature and precipitation anomalies in this region indicate that moister and cooler conditions are also related to increases in precipitation during the preceding months. Because vegetation responds to soil moisture variations, interactions between vegetation and precipitation generate oscillations in NDVI anomalies at growing season time scales, which are identified in the temporal and the spectral characteristics of the precipitation–NDVI system. Spectral analysis of the precipitation–NDVI system also indicates that 1) long-term interactions (i.e., interannual and longer time scales) between the two anomalies tend to enhance one another, 2) short-term interactions (less than 2 months) tend to damp one another, and 3) intermediary-period interactions (4–8 months) are oscillatory. Together, these results support the hypothesis that vegetation may influence summertime climate variability via the land–atmosphere hydrological cycles over these semiarid grasslands.


2016 ◽  
Vol 12 (5) ◽  
pp. 1225-1241 ◽  
Author(s):  
Johan Liakka ◽  
Marcus Löfverström ◽  
Florence Colleoni

Abstract. Modeling studies have shown that the continental-scale ice sheets in North America and Eurasia in the last glacial cycle had a large influence on the atmospheric circulation and thus yielded a climate distinctly different from the present. However, to what extent the two ice sheets influenced each others' growth trajectories remains largely unexplored. In this study we investigate how an ice sheet in North America influences the downstream evolution of the Eurasian ice sheet, using a thermomechanical ice-sheet model forced by climate data from atmospheric snapshot experiments of three distinctly different phases of the last glacial cycle: the Marine Isotope Stages 5b, 4, and 2 (Last Glacial Maximum – LGM). Owing to the large uncertainty associated with glacial changes in the Atlantic meridional overturning circulation, each atmospheric snapshot experiment was conducted using two distinctly different ocean heat transport representations. Our results suggest that changes in the North American paleo-topography may have largely controlled the zonal distribution of the Eurasian ice sheet. In the MIS4 and LGM experiments, the Eurasian ice sheet migrates westward towards the Atlantic sector – largely consistent with geological data and contemporary ice-sheet reconstructions – due to a low wave number stationary wave response, which yields a cooling in Europe and a warming in northeastern Siberia. The expansion of the North American ice sheet between MIS4 and the LGM amplifies the Siberian warm anomaly, which limits the glaciation there and may therefore help explain the progressive westward migration of the Eurasian ice sheet in this time period. The ocean heat transport only has a small influence on the stationary wave response to the North American glacial topography; however, because temperature anomalies have a smaller influence on an ice sheet's ablation in a colder climate than in a warmer one, the impact of the North American glacial topography on the Eurasian ice-sheet evolution is reduced for colder surface conditions in the North Atlantic. While the Eurasian ice sheet in the MIS4 and the LGM experiments appears to be in equilibrium with the simulated climate conditions, the MIS5b climate forcing is too warm to grow an ice sheet in Eurasia. First-order sensitivity experiments suggest that the MIS5b ice sheet was established during preceding colder stages.


Sign in / Sign up

Export Citation Format

Share Document