High-resolution geochemical record for the last 1100 yr from Lake Toson, northeastern Tibetan Plateau, and its climatic implications

2018 ◽  
Vol 487 ◽  
pp. 61-70 ◽  
Author(s):  
Yuan Ling ◽  
Xinqin Dai ◽  
Mianping Zheng ◽  
Qing Sun ◽  
Guoqiang Chu ◽  
...  
2019 ◽  
Vol 124 (8) ◽  
pp. 7588-7603 ◽  
Author(s):  
Fan Yang ◽  
Zhengtang Guo ◽  
Chunxia Zhang ◽  
Sayem Abu Sadat Md ◽  
Zhilin He ◽  
...  

2021 ◽  
Vol 798 ◽  
pp. 228699
Author(s):  
Quan Sun ◽  
Shunping Pei ◽  
Zhongxiong Cui ◽  
Y. John Chen ◽  
Yanbing Liu ◽  
...  

2017 ◽  
Vol 46 ◽  
pp. 141-155 ◽  
Author(s):  
Junliang Ji ◽  
Kexin Zhang ◽  
Peter D. Clift ◽  
Guangsheng Zhuang ◽  
Bowen Song ◽  
...  

2018 ◽  
Vol 10 (12) ◽  
pp. 2067 ◽  
Author(s):  
Lingcao Huang ◽  
Lin Liu ◽  
Liming Jiang ◽  
Tingjun Zhang

Thawing of ice-rich permafrost causes thermokarst landforms on the ground surface. Obtaining the distribution of thermokarst landforms is a prerequisite for understanding permafrost degradation and carbon exchange at local and regional scales. However, because of their diverse types and characteristics, it is challenging to map thermokarst landforms from remote sensing images. We conducted a case study towards automatically mapping a type of thermokarst landforms (i.e., thermo-erosion gullies) in a local area in the northeastern Tibetan Plateau from high-resolution images by the use of deep learning. In particular, we applied the DeepLab algorithm (based on Convolutional Neural Networks) to a 0.15-m-resolution Digital Orthophoto Map (created using aerial photographs taken by an Unmanned Aerial Vehicle). Here, we document the detailed processing flow with key steps including preparing training data, fine-tuning, inference, and post-processing. Validating against the field measurements and manual digitizing results, we obtained an F1 score of 0.74 (precision is 0.59 and recall is 1.0), showing that the proposed method can effectively map small and irregular thermokarst landforms. It is potentially viable to apply the designed method to mapping diverse thermokarst landforms in a larger area where high-resolution images and training data are available.


Water ◽  
2017 ◽  
Vol 9 (11) ◽  
pp. 866 ◽  
Author(s):  
Hongwei Ruan ◽  
Songbing Zou ◽  
Dawen Yang ◽  
Yuhan Wang ◽  
Zhenliang Yin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document