Summer mean temperature reconstruction based on tree-ring density over the past 440 years on the eastern Tibetan Plateau

Author(s):  
Hong Yin ◽  
Ming-Yong Li ◽  
Lei Huang
2018 ◽  
Vol 35 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Ming-Yong Li ◽  
Jian-Ping Duan ◽  
Du-Juan Zhang ◽  
Lily Wang ◽  
Jun Wang ◽  
...  

2015 ◽  
Vol 28 (13) ◽  
pp. 5289-5304 ◽  
Author(s):  
Jianglin Wang ◽  
Bao Yang ◽  
Fredrik Charpentier Ljungqvist

Abstract Although tree-ring-width-based temperature reconstructions of centennial-to-millennial length have previously been published for many parts of the eastern Tibetan Plateau (ETP), a millennium-long regional-scale composite reconstruction with annual resolution has so far been lacking. Here, the authors present a reconstruction of June–August (JJA) temperature variability over the ETP for the period AD 1000–2005 using a nested composite-plus-scale (CPS) approach to 12 temperature-sensitive tree-ring width chronologies, including 946 individual tree-ring width series. The composite reconstruction reveals warm episodes occurring during much of the sixteenth, nineteenth, and twentieth centuries and cold episodes during much of the eleventh, seventeenth, and eighteenth centuries. The period AD 1996–2005 is likely the warmest decade in the context of the past millennium. The authors explore the influence of possible forcings, finding only a weak direct relationship of temperature changes over the ETP with solar forcing at multidecadal time scales but a robust in-phase relationship with the Atlantic multidecadal oscillation (AMO) during the past millennium. This suggests that the AMO may play an important role in controlling summer temperature variability over the ETP at multidecadal time scales. A comparison with temperature reconstructions from the higher latitudes of East Asia, central-eastern China, and the whole of the Northern Hemisphere shows that the cold eleventh century and the warm nineteenth century prevailing over ETP are somewhat unique, suggesting regional specific characteristics of the temperature variability in this region. This result highlights the need to further increase the number of millennium-long, high-resolution temperature records from East Asia.


Sign in / Sign up

Export Citation Format

Share Document