Relative sea-level changes, Schuchert Dal, East Greenland, with implications for ice extent in late-glacial and Holocene times

2010 ◽  
Vol 29 (25-26) ◽  
pp. 3370-3378 ◽  
Author(s):  
B.L. Hall ◽  
C. Baroni ◽  
G.H. Denton
2003 ◽  
Vol 1 ◽  
pp. 893-930 ◽  
Author(s):  
Michael Larsen ◽  
Stefan Piasecki ◽  
Finn Surlyk

A rocky shore developed in early Middle Jurassic times by transgression of the crystalline basement in Milne Land at the western margin of the East Greenland rift basin. The basement is onlapped by shallow marine sandstones of the Charcot Bugt Formation, locally with a thin fluvial unit at the base. The topography of the onlap surface suggests that a relative sea-level rise of at least 300 m took place in Early Bathonian – Middle Oxfordian times. The sea-level rise was punctuated by relative stillstands and falls during which progradation of the shoreline took place. Palynological data tied to the Boreal ammonite stratigraphy have greatly improved time resolution within the Charcot Bugt Formation, and the Jurassic succession in Milne Land can now be understood in terms of genetically-related depositional systems with a proximal to distal decrease in grain size. The sequence stratigraphic interpretation suggests that translation of the depositional systems governed by relative sea-level changes resulted in stacking of sandstone-dominated falling stage deposits in the eastern, basinwards parts of Milne Land, whereas thick, remarkably coarsegrained transgressive systems tract deposits formed along the western basin margin. The bulk of the Charcot Bugt Formation consists of stacked sandstone-dominated shoreface units that prograded during highstands. The overall aggradational to backstepping stacking pattern recognised in the Charcot Bugt Formation is comparable to that in the contemporaneous Pelion Formation of the Jameson Land Basin and in correlative units of the mid-Norway shelf and the Northern North Sea. We suggest that the long-term evolution of the depositional systems may have been controlled by long-term eustatic rise acting in concert with relative sea-level changes reflecting regionally contemporaneous phases of rift initiation, climax and gradual cessation of rifting.


Author(s):  
Ole Bennike ◽  
Katrine Juul Andresen ◽  
Peter Moe Astrup ◽  
Jesper Olsen ◽  
Marit-Solveig Seidenkrantz

We propose a new relative shore-level curve for the Aarhus Bugt area, an embayment in eastern Jylland, Denmark, based on a compilation of published and new radiocarbon ages of organic material. Lakes existed in the area during the Late Glacial and Early Holocene. Lake level rose gradually until the region was inundated by the sea at c. 9000 cal. years BP. The relative sea level reached a high stand at about 6000 cal. years BP, when the local relative sea level was c. 3 m above present-day mean sea level. The Aarhus Bugt area was inundated by the sea later than the Limfjord area in northern Jylland, but earlier than the Lillebælt region in southern Denmark. The shore-level curves for these areas differ partly because the glacio-isostatic uplift was more pronounced in the Limfjord area than farther south and partly because the northern regions were inundated by the sea earlier than the southern areas.


Author(s):  
Morten Bjerager ◽  
Peter Alsen ◽  
Jørgen A. Bojesen-Koefoed ◽  
Tove Nielsen ◽  
Stefan Piasecki ◽  
...  

Data from the recently drilled, fully cored Blokelv-1 borehole and previous cored boreholes in the Upper Jurassic of Jameson Land, central East Greenland, are integrated with published field studies to address the depositional evolution of the Jameson Land Basin in the Oxfordian–Volgian. In Jameson Land, the succession represents a marine shelf-to-basin transect in a W–SW-dipping half-graben. Laminated organic-rich mudstones were deposited in the central deep parts of the basin and grade up-slope into bioturbated sandy mudstones. Extensive shallow marine – deltaic sand prograded from the western and northern basin margins and formed prominent sandy shelf-edge wedges. Sand-rich density flows initiated by periodic collapse of the shelf edge deposited massive sand bodies on the slope and basin floor; these sands were prone to post-burial remobilisation to form injectite bodies. Basin evolution was controlled both by relative sea-level changes, typically correlatable with regional and global sea-level curves, and by rift tectonics. During periods with high relative sea level, the organicrich muddy facies onlapped the sandy shelf environments; such periods of basinal expansion and onlap are recorded in the lower Oxfordian (Q. mariae Chronozone), the middle–upper Oxfordian (C. tenuiserratum – A. glosense Chronozones) and uppermost Oxfordian – upper Kimmeridgian (A. regulare – A. autissiodorensis Chronozones); the deepening, transgressive trend culminated in the mid-Kimmeridgian (A. eudoxus Chron). Marked progradation of the sandy shelf and associated deposition of gravity-flow sands on the slope and basin floor occurred in the early Oxfordian (C. cordatum Chron), the middle Oxfordian (C. densiplicatum Chron), the late Oxfordian (A. serratum Chron) and the early Volgian (P. elegans Chron). The basin architecture reflects periodic differential subsidence on the W- to SW-dipping fault block. The lower to middle Oxfordian is highly condensed in the east (<10 m) and thickens markedly towards the west (>300 m), reflecting accumulation during rift/fault-controlled block rotation. The upper Oxfordian – Kimmeridgian, in contrast, shows a broadly symmetrical distribution and records uniform regional subsidence.


2012 ◽  
Vol 25 (3) ◽  
pp. 409-419 ◽  
Author(s):  
Nathalie Van Der Putten ◽  
Cyriel Verbruggen ◽  
Helena Alexanderson ◽  
Svante Björck ◽  
Bart Van De Vijver

AbstractA detailed stratigraphical, palaeoecological and geomorphological reconstruction of a fjord head on South Georgia (Husvik, Stromness Bay) is presented. Six sites were chosen to reconstruct the lithostratigraphy of the area by means of coring. A maximum depth of 11 m was attained and the sediments encountered vary from coarse gravel over sands to fine silts with, in some cases, intercalated peat layers. Diatom analysis allowed determination of whether the sedimentological units were deposited in a marine or freshwater environment. Six radiocarbon dates constrain the chronology. Deglaciation of the area was completed in the early Holocene and the postglacial geomorphological evolution of Husdal (unofficial name) was controlled by fluvio-deltaic deposition and sea level changes. Relative sea level rise was faster than, or kept pace with the isostatic rebound of the land. Our results challenge the presence of Late Glacial and Holocene raised beach deposits in the area as reported in earlier geomorphological studies.


2007 ◽  
Vol 242 (1-3) ◽  
pp. 5-26 ◽  
Author(s):  
D.E. Smith ◽  
R.A. Cullingford ◽  
T.M. Mighall ◽  
J.T. Jordan ◽  
P.T. Fretwell

2011 ◽  
Vol 26 (4) ◽  
pp. 353-361 ◽  
Author(s):  
Ole Bennike ◽  
Bernd Wagner ◽  
Andreas Richter

Sign in / Sign up

Export Citation Format

Share Document