block rotation
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 38)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
Vol 151 (4) ◽  
pp. 411-422
Author(s):  
Krisztina Sebe

The Pécs-Danitzpuszta sand pit in southern Hungary exposes middle and upper Miocene (Badenian to Pannonian/Langhian to Tortonian) sediments along the mountain front fault zone of the Mecsek Mts and preserves an essential record of tectonic events during and after the early late Miocene, which are not exposed elsewhere in the region. In this paper we present structural observations recorded over 20 years of work, date the deformation events with mollusk biostratigraphy and make inferences on the structural evolution of the area. At the beginning of the time interval between 10.2–10.0 Ma, NNW–SSE (to NW–SE) extension created normal faults and negative flower structures. These show that extension-related fault activity lasted here up to the late Miocene. Shortly thereafter, still in the early part of the time interval between 10.2–10.0 Ma, N–S to NNW–SSE compression ensued and dominated the area ever since. Deformations under this stress field included reverse faulting in the Pannonian marls and sands, folding of the whole succession, with bedding-plane slip and shearingelated block rotation in the already deposited middle and upper Miocene marl layers and continuously changing bedding dips and southward thickening layers in the Pannonian sands. Lake level changes of Lake Pannon must have played a role in the formation of an angular unconformity within the sands besides compression. The compressional event can be explained by the Africa (Adria) – Europe convergence, but cannot be correlated regionally; it pre-dates basin inversion-related events reported from the region so far.


2021 ◽  
Vol 2140 (1) ◽  
pp. 012031
Author(s):  
N A Shalyapina ◽  
M L Gromov ◽  
A K Matolygin ◽  
S N Torgaev

Abstract The paper considers a cellular automaton approach to modeling physical processes, in particular, the diffusion of pulsed periodic gas discharges in plasma. An attempt to determine the dependence of the probability of the block rotation on the diffusion coefficient for a cellular automaton diffusion model with a Margolus neighborhood is describe. Some features of the tensor approach to the implementation of random block cellular automata are described. The results of computer experiments are presented. The analysis of this results indicates that the data from the literature sources differ from the data obtained during the experiment.


2021 ◽  
Vol 40 (12) ◽  
pp. 923-930
Author(s):  
Pedro A. Galindo ◽  
Lidia Lonergan

Sigmoidal fold and fault geometries are typical kinematic indicators of strike-slip fault zones. We document kilometer-scale, normal faults with sigmoidal plan-view geometries within the dextral pull-apart Bahia Basin, at the rear of the obliquely convergent South Caribbean Deformed Belt, offshore Colombia. Using 3D seismic reflection data calibrated to wells, closely spaced, low-displacement, planar normal faults are mapped within the Miocene strata. A series of seismic horizontal (time) slices and computed seismic attributes are used to interpret the 3D configuration of these faults. The closely spaced faults display an east–west trend with a progressive rotation into a northwest–southeast trend. In map view, the fault traces curve toward their tips, describing a sigmoidal-Z geometry that terminates at discrete northeast–southwest-trending fault zones. The structures observed may correspond to either tension fractures, which form theoretically at 45°, or antithetic shear fractures with normal displacement formed at 50°–70° to the boundaries of a dextral shear zone. These scenarios lead to a clockwise block rotation of between 20° and 40° within the shear zone. This study shows the first example of vertical-axis block rotations observed offshore in the western end of the South Caribbean margin and is an important example of the use of 3D seismic data to identify rotations where paleomagnetic studies are not available.


2021 ◽  
Author(s):  
Kristine A Keon ◽  
Samir Benlekbir ◽  
John L Rubinstein

Vacuolar-type adenosine triphosphatases (V-ATPases) are proton pumps found in almost all eukaryotic cells. These enzymes consist of a soluble catalytic V1 region that hydrolyzes ATP and a membrane-embedded VO region responsible for proton translocation. V-ATPase activity leads to acidification of endosomes, phagosomes, lysosomes, secretory vesicles, and the trans-Golgi network, with extracellular acidification occurring in some specialized cells. Small molecule inhibitors of V-ATPase have played a crucial role in elucidating numerous aspects of cell biology by blocking acidification of intracellular compartments, while therapeutic use of V-ATPase inhibitors has been proposed for treatment of cancer, osteoporosis, and some infections. Here, we determine structures of the isolated VO complex from Saccharomyces cerevisiae bound to two well-known macrolide inhibitors: bafilomycin A1 and archazolid A. The structures reveal different binding sites for the inhibitors on the surface of the proton-carrying c ring, with only a small amount of overlap between the two sites. Binding of both inhibitors is mediated primarily through van der Waals interactions in shallow pockets and suggests that the inhibitors block rotation of the ring. Together, these structures indicate the existence of a large chemical space available for V-ATPase inhibitors that block acidification by binding the c ring.


Author(s):  
Giuseppe Dattola ◽  
Giovanni Battista Crosta ◽  
Claudio di Prisco

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5442
Author(s):  
Wenwei Gao ◽  
Hairong Yang ◽  
Le Wang ◽  
Ruilin Hu

Soil–rock mixtures (S-RMs), as a kind of special engineering geological material, need to be studied because of the special structure and complex movement mechanism of their rock blocks, their physical and mechanical properties, and the factors underlying rock block movement in the process of their deformation and failure. In this paper, a series of discrete-element numerical models are constructed in particle flow code software (PFC2D). First, the random structure numerical models of S-RMs with different rock block proportions are established. Then, the parameters of the soil meso-structure are inversed by the biaxial simulation test, and a series of biaxial compressive tests are performed. The characteristics of stress and strain, deformation and failure, and rock block rotation and energy evolution are systematically investigated. The results show the following. (1) As the rock block proportion (confining pressure 0.5 MPa) increases, the peak strength of increases, the fluctuations of the post-peak become more obvious, and the dilatancy of the sample increases. (2) As the rock block proportion increases, the width of the shear band increases, the distribution of cracks becomes more complex and dispersed, and the range of the shear zone increases. (3) The number of rock blocks with rotation also increases significantly as rock block proportion increases, and the rotation angles are mostly between −5° and 5°. (4) The strain energy of S-RMs with different rock block proportions follows the same change rule as axial strain, showing a trend of first increasing and then decreasing, like the stress–strain curve.


Solid Earth ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1719-1747
Author(s):  
Torsten Hundebøl Hansen ◽  
Ole Rønø Clausen ◽  
Katrine Juul Andresen

Abstract. Using borehole-constrained 3D reflection seismic data, we analyse the importance of sub-salt, salt, and supra-salt deformation in controlling the geometries and the kinematics of inverted structures in the Danish Central Graben. The Danish Central Graben is part of the failed Late Jurassic North Sea rift. Later tectonic shortening caused mild basin inversion during the Late Cretaceous and Paleogene. Where mobile Zechstein evaporites are present, they have played a significant role in the structural evolution of the Danish Central Graben since the Triassic. Within the study area, Jurassic rifting generated two major W- to SW-dipping basement faults (the Coffee Soil Fault and the Gorm–Tyra Fault) with several kilometres of normal offset and associated block rotation. The Coffee Soil Fault system delineates the eastern boundary of the rift basins, and within its hanging wall a broad zone is characterized by late Mesozoic to early Paleogene shortening and relative uplift. Buttressed growth folds in the immediate hanging wall of the Coffee Soil Fault indicate thick-skinned inversion, i.e. coupled deformation between the basement and cover units. The western boundary of the inverted zone follows the westward pinch-out of the Zechstein salt. Here, thin-skinned folds and faults sole out into Zechstein units dipping into the half-graben. The most pronounced inversion structures occur directly above and in prolongation of salt anticlines and rollers that localized shortening in the cover above. With no physical links to underlying basement faults (if present), we balance thin-skinned shortening to the sub-salt basement via a triangle zone concept. This implies that thin Zechstein units on the dipping half-graben floor formed thrust detachments during inversion while basement shortening was mainly accommodated by reactivation of the major rift faults further east. Disseminated deformation (i.e. “ductile” at seismic scales) accounts for thin-skinned shortening of the cover units where such a detachment did not develop. The observed structural styles are discussed in relation to those found in other inverted basins in the North Sea Basin and to those produced from physical model experiments. Our results indicate that Zechstein units imposed a strong control on structural styles and kinematics not only during rift-related extension but also during basin inversion in large parts of the Danish Central Graben. Reactivated thin-skinned faults soling out into thin Triassic evaporite units within the carapace above Zechstein salt structures illustrate that even thin evaporite units may contribute to defining structures during tectonic extension and shortening. We thus provide an updated and dedicated case study of post-rift basin inversion, which takes into account the mechanical heterogeneity of sub-salt basement, salt, and supra-salt cover, including multiple evaporite units of which the Zechstein is the most important.


2021 ◽  
Vol 23 (1) ◽  
pp. 129-134
Author(s):  
Vladimir V. Khominets ◽  
Ivan V. Gaivoronsky ◽  
Alexey L. Kudyashev ◽  
Alexey A. Semenov ◽  
Ivan S. Bazarov ◽  
...  

There was experimental justification of the optimal technique for choosing the rotation of the femoral component of the knee joint endoprosthesis carried out in this research. The individual morphometric characteristics of the femoral condyles and the condition of the collateral ligaments were taken into account in the experiment. The research was conducted on polymer-embalmed preparations of the knee joint, which were divided into three groups, according to the forms of the femoral condyles. We used the standard technique of positioning the resection block and the technique of individual selection of the rotation of the resection block (rotation of the femoral component of the endoprosthesis), based on the assessment of individual morphometric characteristics of the femoral condyles and the state of the auxiliary elements of the knee joint. To implement this surgical approach, typical resections of the proximal condyles of the tibia and distal condyles of the femur were performed, which technically did not differ from the sawdust used in the standard procedure. Then the knee joint was flexed to an angle of 90, Homan retractors were removed and two laminar dilators (Laminar Spreader) were installed in the gap between the proximal tibial sawdust and the posterior parts of the lateral and medial condyles of the femur. This technique provided isometric tension of the fibular and tibial collateral ligaments of the knee joint. Then carried out the positioning of the femoral resection block "four in one". In this case, only the line of the proximal tibial sawdust was used as a reference point, for which the posterior flange of the resection block was positioned parallel to the sawed upper articular surface of the tibia. It is established that the use of the considered technique of positioning the femoral resection block ensures the formation of a uniform flexor gap, regardless of the variant anatomy of the femoral condyles. Thus, there was research a uniform flexion gap in the experiment, which ensured isometric movements in the knee joint and its stability at the control points of the amplitude after implantation of the trial or final components of the endoprosthesis.


Author(s):  
Kate Brooks ◽  
Phil J.A. McCausland ◽  
John W.F. Waldron

The ca. 355 Ma Fountain Lake Group, in the Cobequid Highlands of Nova Scotia, is part of the transtensional basin fill which formed during dextral strike-slip motion between Avalonia and the Meguma terranes following the Acadian Orogeny. Paleomagnetic analysis of the Fountain Lake Group offers a paleolatitude estimate for the Laurentian accretionary margin in the Early Carboniferous and locality-specific paleomagnetic directions which indicate clockwise-sense block rotations during dextral strike-slip motion along the Cobequid Fault zone. Stepwise demagnetization of 142 specimens from 20 sites in three Fountain Lake Group localities across the Cobequid Highlands (Squally Point, West Moose River, and Wentworth exposures) reveals remanence consisting of an easily removed component of probable recent origin, and more persistent components carried by magnetite and hematite, which in petrographic and electron beam analysis appear to be of primary igneous and volcanic oxidation origins, respectively. Sites from all three localities carry stable characteristic remanent magnetization (ChRM) directions that assume similar moderate downward inclinations when tilt-corrected. A Block Rotation Fisher analysis inclination-only fold test demonstrated best agreement at 90% unfolding, showing that remanence acquisition pre-dates Alleghenian deformation in the Late Carboniferous and is most likely of primary 355 Ma age. Paleomagnetic results for the Squally Point, West Moose River and Wentworth localities show relative rotations between the blocks that are variously clockwise-rotated compared with a Laurentia cratonic reference frame. Inclinations at all three localities imply a subtropics paleolatitude for the margin (at Squally Point, 27.2° ± 9.4°; N= 7 sites), directly supporting the depicted location of Laurentia and its Appalachian accretionary margin in most Devonian to Early Carboniferous reconstructions.


Author(s):  
Dan Sandiford ◽  
Sascha Brune ◽  
Anne Glerum ◽  
John Naliboff ◽  
Joanne M. Whittaker
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document