scholarly journals Late Glacial and Holocene shore-level changes in the Aarhus Bugt area, Denmark

Author(s):  
Ole Bennike ◽  
Katrine Juul Andresen ◽  
Peter Moe Astrup ◽  
Jesper Olsen ◽  
Marit-Solveig Seidenkrantz

We propose a new relative shore-level curve for the Aarhus Bugt area, an embayment in eastern Jylland, Denmark, based on a compilation of published and new radiocarbon ages of organic material. Lakes existed in the area during the Late Glacial and Early Holocene. Lake level rose gradually until the region was inundated by the sea at c. 9000 cal. years BP. The relative sea level reached a high stand at about 6000 cal. years BP, when the local relative sea level was c. 3 m above present-day mean sea level. The Aarhus Bugt area was inundated by the sea later than the Limfjord area in northern Jylland, but earlier than the Lillebælt region in southern Denmark. The shore-level curves for these areas differ partly because the glacio-isostatic uplift was more pronounced in the Limfjord area than farther south and partly because the northern regions were inundated by the sea earlier than the southern areas.

1990 ◽  
Vol 34 (3) ◽  
pp. 296-305 ◽  
Author(s):  
Peter U. Clark ◽  
William W. Fitzhugh

AbstractThe age of the marine limit and associated deglaciation has been estimated from relative sea-level curves for the Hopedale and Nain areas of the central Labrador coast as approximately 7600 ± 200 and 8500 ± 200 yr ago, respectively. These ages indicate that the ice margin remained on the coast for up to 3000 yr longer than previously estimated. Because the central coast is due east of glacial lakes Naskaupi and McLean, the earliest the lakes could have formed was <8500 ± 200 yr ago, with their largest phases being fully established only after 7600 ± 200 yr ago. This suggests that the age of the lakes, and associated deglaciation of the central Labrador-Ungava region, is younger by at least 1500 yr than previously estimated. A late-glacial marine-based ice mass in Ungava Bay that dammed the lakes collapsed ca. 7000 yr ago. Within this time frame, therefore, the glacial lakes only existed for <500 yr. The persistence of the Laurentide Ice Sheet margin on the central Labrador coast until 7600 yr ago probably restricted the northward movement of early prehistoric people into northern Labrador.


1999 ◽  
Vol 136 (6) ◽  
pp. 681-696 ◽  
Author(s):  
C. J. UNDERWOOD ◽  
S. F. MITCHELL

The mid-Cretaceous sediments of northeast England were deposited at the western margin of the southern North Sea Basin, with sedimentation occurring in a range of tectonic settings. Detailed analysis of the areal distribution and sedimentary facies of Aptian to earliest Cenomanian sediments has allowed the pattern of onlap onto the Market Weighton structural high and changes in relative sea level to be documented. Successive onlap episodes during the Early Aptian, Late Aptian and Early Albian culminated in the final flooding of the structure during the Late Albian (varicosum Subzone). Sea-level curves generated from coastal onlap patterns are difficult to relate to published ‘global’ sea-level curves due to the high frequency of the fluctuations in relative sea level observed. Despite this, detailed correlation and analysis of sedimentological events suggest that even the most expanded, basinal succession is relatively incomplete. This study has also shown that the change from dominantly syn-tectonic to dominantly post-tectonic sedimentation style occurred in the late Early Albian.


1981 ◽  
Vol 18 (7) ◽  
pp. 1146-1163 ◽  
Author(s):  
Garry Quinlan ◽  
Christopher Beaumont

Two extreme models of late Wisconsinan ice cover in Atlantic Canada and the northeastern U.S.A. are shown to produce postglacial relative sea level curves that bracket existing field observations at six sites throughout the region. This suggests that the true late Wisconsinan ice distribution is probably intermediate to the two contrasting reconstructions proposed. Both ice models predict the existence of four relative sea level zones: an innermost zone closest to the centre of glaciation in which relative sea level falls continuously throughout postglacial time; an outermost zone in which it rises continuously; and two transitional zones in which it first falls and then rises in varying proportions according to the distance from the ice margin. The distinctive forms of the relative sea level curves are probably representative of each of the zones and are unlikely to be significantly perturbed even by large local ice readvances. They, therefore, establish patterns with which future field data are expected to conform. The form that the geological record of relative sea level change is likely to take within each zone is discussed and promising settings for the collection of new data are proposed. The common practice of separating relative sea level into an isostatic and a eustatic component is analysed and shown to be incorrect as usually applied. The practice is also shown to be unnecessary because the models discussed in this paper predict changes in relative sea level that can be compared directly with the observations.


2001 ◽  
Vol 30 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Matti Eronen ◽  
Gunnar Glückert ◽  
Lassi Hatakka ◽  
Orson van de Plassche ◽  
Johannes van der Plicht ◽  
...  

2007 ◽  
Vol 59 (2-3) ◽  
pp. 155-185 ◽  
Author(s):  
Arthur S. Dyke ◽  
Lynda A. Dredge ◽  
Douglas A. Hodgson

Abstract The deglacial marine-limit surface is a virtual topography that shows the increase of elevation since deglaciation. The currently available set of marine-limit elevations (n = 929), about three times the number available in the most recent synthesis, allows a fairly detailed rendering of the surface across most of glaciated North America and Greenland. Certain large glacial lake-limit surfaces are analogous to marine-limit surfaces, except that their gradients were not dampened by eustatic sea-level rise. Collectively the surfaces reflect both gross ice-sheet geometry and regional to local rates of ice-marginal recession. As such, they are replication targets for glacioisostatic modelling that are supplementary to and more continuously distributed than relative sea-level curves.


Sign in / Sign up

Export Citation Format

Share Document