south georgia
Recently Published Documents


TOTAL DOCUMENTS

1036
(FIVE YEARS 83)

H-INDEX

54
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Neil P. Hindley ◽  
Neil Cobbett ◽  
David C. Fritts ◽  
Diego Janchez ◽  
Nicholas J. Mitchell ◽  
...  

Abstract. The mesosphere and lower thermosphere (MLT) is a dynamic layer of the earth’s atmosphere. This region marks the interface at which neutral atmosphere dynamics begin to influence the ionosphere and space weather. However, our understanding of this region and our ability to accurately simulate it in global circulation models (GCMs) is limited by a lack of observations, especially in remote locations. To this end, a meteor radar was deployed on the remote mountainous island of South Georgia (54° S, 36° W) in the Southern Ocean from 2016 to 2020. The goal of this study is to use these new measurements to characterise the fundamental dynamics of the MLT above South Georgia including large-scale winds, solar tides, planetary waves (PWs) and mesoscale gravity waves (GWs). We first present an improved method for time-height localisation of radar wind measurements and characterise the large-scale MLT winds. We then explore the amplitudes and phases of the diurnal (24 h), semidiurnal (12 h) and terdiurnal (8 h) solar tides at this latitude. We also explore PW activity and find very large amplitudes up to 30 ms−1 for the quasi-2 day wave in summer and show that the dominant modes of the quasi-5, 10 and 16 day waves are westward W1 and W2. We investigate wind variance due to GWs in the MLT and use a new method to show an east-west tendency of GW variance of up to 20 % during summer and a weaker north-south tendency of 0–5 % during winter. This is contrary to the expected tendency of GW directions in the winter stratosphere below, which is a strong suggestion of secondary GW (2GW) observations in the MLT. Lastly, comparison of radar winds to a climatological Whole Atmosphere Community Climate Model (WACCM) simulation reveals a simulated summertime mesopause and zonal wind shear that occur at altitudes around 10 km lower than observed, and southward winds during winter above 90 km altitude in the model that are not seen in observations. Further, wintertime zonal winds above 85 km altitude are eastward in radar observations but in WACCM they are found to weaken and reverse to westward. Recent studies have linked this discrepancy to the impact of 2GWs on the residual circulation which are not included in WACCM. These measurements therefore provide vital constraints that can guide the development of GCMs as they extend upwards into this important region of the atmosphere.


The Holocene ◽  
2021 ◽  
pp. 095968362110604
Author(s):  
Maaike Zwier ◽  
Willem GM van der Bilt ◽  
Henko de Stigter ◽  
Anne E Bjune

The Southern Hemisphere Westerlies (SHW) play a major role in the global climate system. The winds drive ocean circulation and affect the Southern Oceans’ ability to take up atmospheric CO2. Recently, the SHW core belt has strengthened and shifted south, but there is an insufficient understanding of its long-term behaviour. Palaeoclimatic records are key for capturing long-term variability through the SHW’s effect on surface temperature and moisture availability. However, terrestrial records are sparse in the Southern Hemisphere. We use a palynological record from Lake Diamond on sub-Antarctic South Georgia to provide reconstructions of vegetation and climate for the last ~10,000 years. Influx of long-distance transported pollen is used as a measure of surface wind strength. Changes in relative pollen abundance of native taxa occupying either upland (cold) or lowland (warm) environments indicate local climatic variability. On South Georgia, we find long-distance transported pollen from South American taxa, mainly Nothofagus and Ephedra. They show a general increase in abundance throughout the Holocene, with peak influxes between 5700–5400, 2800–1500 and 1000–500 cal yr BP. These intervals coincide with colder periods inferred from the palynological record, suggesting that SHW variation and temperature on South Georgia are highly connected. Agreement with palaeoecological records from eastern Patagonia show that climatic changes have been regionally consistent. The record from Lake Diamond further illustrates the importance of remote islands in contributing to a deeper understanding of atmospheric circulation and climatic variability in the sub-Antarctic.


2021 ◽  
Vol 8 ◽  
Author(s):  
Roland Proud ◽  
Camille Le Guen ◽  
Richard B. Sherley ◽  
Akiko Kato ◽  
Yan Ropert-Coudert ◽  
...  

King penguins (Aptenodytes patagonicus) are an iconic Southern Ocean species, but the prey distributions that underpin their at-sea foraging tracks and diving behaviour remain unclear. We conducted simultaneous acoustic surveys off South Georgia and tracking of king penguins breeding ashore there in Austral summer 2017 to gain insight into habitat use and foraging behaviour. Acoustic surveys revealed ubiquitous deep scattering layers (DSLs; acoustically detected layers of fish and other micronekton that inhabit the mesopelagic zone) at c. 500 m and shallower ephemeral fish schools. Based on DNA extracted from penguin faecal samples, these schools were likely comprised of lanternfish (an important component of king penguin diets), icefish (Channichthyidae spp.) and painted noties (Lepidonotothen larseni). Penguins did not dive as deep as DSLs, but their prey-encounter depth-distributions, as revealed by biologging, overlapped at fine scale (10s of m) with depths of acoustically detected fish schools. We used neural networks to predict local scale (10 km) fish echo intensity and depth distribution at penguin dive locations based on environmental correlates, and developed models of habitat use. Habitat modelling revealed that king penguins preferentially foraged at locations predicted to have shallow and dense (high acoustic energy) fish schools associated with shallow and dense DSLs. These associations could be used to predict the distribution of king penguins from other colonies at South Georgia for which no tracking data are available, and to identify areas of potential ecological significance within the South Georgia and the South Sandwich Islands marine protected area.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wojciech Majewski ◽  
Maria Holzmann ◽  
Andrew J. Gooday ◽  
Aneta Majda ◽  
Tomasz Mamos ◽  
...  

AbstractThe Antarctic coastal fauna is characterized by high endemism related to the progressive cooling of Antarctic waters and their isolation by the Antarctic Circumpolar Current. The origin of the Antarctic coastal fauna could involve either colonization from adjoining deep-sea areas or migration through the Drake Passage from sub-Antarctic areas. Here, we tested these hypotheses by comparing the morphology and genetics of benthic foraminifera collected from Antarctica, sub-Antarctic coastal settings in South Georgia, the Falkland Islands and Patagonian fjords. We analyzed four genera (Cassidulina, Globocassidulina, Cassidulinoides, Ehrenbergina) of the family Cassidulinidae that are represented by at least nine species in our samples. Focusing on the genera Globocassidulina and Cassidulinoides, our results showed that the first split between sub-Antarctic and Antarctic lineages took place during the mid-Miocene climate reorganization, probably about 20 to 17 million years ago (Ma). It was followed by a divergence between Antarctic species ~ 10 Ma, probably related to the cooling of deep water and vertical structuring of the water-column, as well as broadening and deepening of the continental shelf. The gene flow across the Drake Passage, as well as between South America and South Georgia, seems to have occurred from the Late Miocene to the Early Pliocene. It appears that climate warming during 7–5 Ma and the migration of the Polar Front breached biogeographic barriers and facilitated inter-species hybridization. The latest radiation coincided with glacial intensification (~ 2 Ma), which accelerated geographic fragmentation of populations, demographic changes, and genetic diversification in Antarctic species. Our results show that the evolution of Antarctic and sub-Antarctic coastal benthic foraminifera was linked to the tectonic and climatic history of the area, but their evolutionary response was not uniform and reflected species-specific ecological adaptations that influenced the dispersal patterns and biogeography of each species in different ways.


Marine Policy ◽  
2021 ◽  
Vol 131 ◽  
pp. 104618
Author(s):  
M.A. Collins ◽  
P.R. Hollyman ◽  
J. Clark ◽  
M. Soeffker ◽  
O. Yates ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Oliver T. Hogg ◽  
Anna-Leena Downie ◽  
Rui P. Vieira ◽  
Chris Darby

The sub-Antarctic South Sandwich Islands forms part of one of the largest marine protected areas (MPAs) in the world. Whilst the neighbouring island of South Georgia is known to be a biodiversity hotspot, very little was known about the benthic biodiversity or biogeography of the South Sandwich Islands. Here we present findings from the first biophysical assessment of this polar archipelago. Using open-access datasets, alongside results from a recent UK Government-funder Blue Belt expedition to the region, we assess how the island’s biodiversity is structured spatially and taxonomically and how this is driven by environmental factors. The South Sandwich Islands are shown to be both biologically rich, and biogeographically distinct from their neighbouring provinces. A gradient forest approach was used to map the archipelago’s benthic habitats which, based on the functional composition of benthic fauna and environmental characterisation of the benthic environment, demonstrated a distinct biogeographical north-south divide. This faunal and environmental discontinuity between the South Sandwich Islands and the rest of the MPA and between the different islands of the archipelago itself, highlights the importance of the zoned protection across the South Georgia and South Sandwich Islands Marine Protected Area.


Sign in / Sign up

Export Citation Format

Share Document