scholarly journals Southern Hemisphere westerly wind changes during the Last Glacial Maximum: model-data comparison

2013 ◽  
Vol 64 ◽  
pp. 104-120 ◽  
Author(s):  
Louise C. Sime ◽  
Karen E. Kohfeld ◽  
Corinne Le Quéré ◽  
Eric W. Wolff ◽  
Agatha M. de Boer ◽  
...  
2005 ◽  
Vol 337 (10-11) ◽  
pp. 983-992 ◽  
Author(s):  
Masa Kageyama ◽  
Nathalie Combourieu Nebout ◽  
Pierre Sepulchre ◽  
Odile Peyron ◽  
Gerhard Krinner ◽  
...  

2007 ◽  
Vol 3 (2) ◽  
pp. 331-339 ◽  
Author(s):  
G. Ramstein ◽  
M. Kageyama ◽  
J. Guiot ◽  
H. Wu ◽  
C. Hély ◽  
...  

Abstract. The Last Glacial Maximum has been one of the first foci of the Paleoclimate Modelling Intercomparison Project (PMIP). During its first phase, the results of 17 atmosphere general circulation models were compared to paleoclimate reconstructions. One of the largest discrepancies in the simulations was the systematic underestimation, by at least 10°C, of the winter cooling over Europe and the Mediterranean region observed in the pollen-based reconstructions. In this paper, we investigate the progress achieved to reduce this inconsistency through a large modelling effort and improved temperature reconstructions. We show that increased model spatial resolution does not significantly increase the simulated LGM winter cooling. Further, neither the inclusion of a vegetation cover compatible with the LGM climate, nor the interactions with the oceans simulated by the atmosphere-ocean general circulation models run in the second phase of PMIP result in a better agreement between models and data. Accounting for changes in interannual variability in the interpretation of the pollen data does not result in a reduction of the reconstructed cooling. The largest recent improvement in the model-data comparison has instead arisen from a new climate reconstruction based on inverse vegetation modelling, which explicitly accounts for the CO2 decrease at LGM and which substantially reduces the LGM winter cooling reconstructed from pollen assemblages. As a result, the simulated and observed LGM winter cooling over Western Europe and the Mediterranean area are now in much better agreement.


2013 ◽  
Vol 68 ◽  
pp. 76-95 ◽  
Author(s):  
K.E. Kohfeld ◽  
R.M. Graham ◽  
A.M. de Boer ◽  
L.C. Sime ◽  
E.W. Wolff ◽  
...  

2007 ◽  
Vol 3 (1) ◽  
pp. 197-220 ◽  
Author(s):  
G. Ramstein ◽  
M. Kageyama ◽  
J. Guiot ◽  
H. Wu ◽  
C. Hély ◽  
...  

Abstract. The Last Glacial Maximum has been one of the first foci of the Paleoclimate Modelling Intercomparison Project (PMIP). During its first phase, the results of 17 atmosphere general circulation models were compared to paleoclimate reconstructions. One of the largest discrepancies in the simulations was the systematic underestimation, by at least 10°C, of the winter cooling over Europe and the Mediterranean region observed in the pollen-based reconstructions. In this paper, we investigate the progress achieved to reduce this inconsistency through a large modelling effort and improved temperature reconstructions. We show that increased model spatial resolution does not significantly increase the simulated LGM winter cooling. Further, neither the inclusion of a vegetation cover compatible with the LGM climate, nor the interactions with the oceans simulated by the atmosphere-ocean general circulation models run in the second phase of PMIP result in a better agreement between models and data. Accounting for changes in interannual variability in the interpretation of the pollen data does not result in a reduction of the reconstructed cooling. The largest recent improvement in the model-data comparison has instead arisen from a new climate reconstruction based on inverse vegetation modelling, which explicitly accounts for the CO2 decrease at LGM and which substantially reduces the LGM winter cooling reconstructed from pollen assemblages. As a result, the simulated and observed LGM winter cooling over Western Europe and the Mediterranean area are now in much better agreement.


2020 ◽  
Author(s):  
Allan Ashworth ◽  
et al.

Age-depth model data, images of fossil insect and plant macroscopic remains, lists of skeletal elements for fossil insects, and locality and derived climate data for Olophrum boreale and Olophrum consimile<br>


2020 ◽  
Vol 33 (13) ◽  
pp. 5713-5725
Author(s):  
Seo-Yeon Kim ◽  
Seok-Woo Son

AbstractA poleward displacement of the Hadley cell (HC) edge and the eddy-driven jet latitude has been observed in the Southern Hemisphere (SH) during the last few decades. This change is further projected to continue in the future, indicating coherent tropical and extratropical zonal-mean circulation changes from the present climate to a warm climate. Here we show that such a systematic change in the zonal-mean circulation change does not hold in a cold climate. By examining the Last Glacial Maximum (LGM), preindustrial (PI), and extended concentration pathway 4.5 (ECP4.5) scenarios archived for phase 3 of the Paleoclimate Modeling Intercomparison Project (PMIP3) and phase 5 of the Coupled Model Intercomparison Project (CMIP5), it is shown that while the annual-mean SH HC edge systematically shifts poleward from the LGM scenario to the PI scenario and then to the ECP4.5 scenario the annual-mean SH eddy-driven jet latitude does not. All models show a poleward jet shift from the PI scenario to the ECP4.5 scenario, but over one-half of the models exhibit no trend or even an equatorward jet shift from the LGM scenario to the PI scenario. This decoupling between the HC edge and jet latitude changes is most pronounced in SH winter when the Antarctic surface cooling in the LGM scenario is comparable to or larger than the tropical upper-tropospheric cooling. This result indicates that polar amplification could play a crucial role in driving the decoupling of the tropical and midlatitude zonal-mean circulation in the SH in a cold climate.


Sign in / Sign up

Export Citation Format

Share Document