winter cooling
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 9)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Bin Liu ◽  
Chen Zhao ◽  
Ling Zhu ◽  
Jian Liu

To investigate the pure long-term influence of single mega volcanic eruption (SMVE) of universal significance on Arctic temperature changes in summer and winter, the Samalas eruption in Indonesia which is the largest eruption over the past millennium is selected as an ideal eruption for simulation study based on Community Earth System Model. The significant Arctic cooling lasts for 16 years after the Samalas eruption. The obvious Arctic cooling shifts from summer to winter, and this seasonal change of cooling after the SMVE only exists in the high-latitude Arctic region. The cooling range in Arctic summer is larger than that in winter during the first 2 years, due to the strong weakening effect of volcanic aerosol on summer incident solar radiation and the snow-ice positive feedback caused by the rapid expansion of summer sea ice, while the winter sea ice in the same period doesn’t increase obviously. Starting from the third year, the Arctic winter cooling is more intense and lasting than summer cooling. The direct weakening effect of aerosol on solar radiation, which is the main heat source in Arctic summer, is greatly weakened during this period, making summer cooling difficult to sustain. However, as the main heat source in Arctic winter, the sea surface upward longwave radiation, sensible heat, and latent heat transport still maintain a large decrease. Furthermore, sea ice expansion and albedo increase result in the decrease in solar radiation and heat absorbed and stored by the ocean in summer. And the isolation effect of sea ice expansion on air-sea heat transfer in winter during this period makes the heat transfer from the ocean to the atmosphere correspondingly reduce in winter, thus intensifying the Arctic winter cooling. Additionally, the Arctic Oscillation (AO) changes from the negative phase to the positive phase in summer after the SMVE (such as Samalas), while it is reversed in winter. This phase change of AO is also one of the reasons for the seasonal changes in Arctic cooling.


2021 ◽  
Author(s):  
Florent Domine ◽  
Kevin Fourteau ◽  
Ghislain Picard ◽  
Georg Lackner ◽  
Denis Sarrazin ◽  
...  

Abstract Warming-induced shrub expansion on Arctic tundra (Arctic greening) is thought to warm up permafrost by several degrees, as shrubs trap blowing snow and increase snowpack thermal insulation, limiting permafrost winter cooling and facilitating its thaw. At Bylot Island, (Canadian high Arctic, 73°N) we monitored permafrost temperature at nearby unmanipulated herb tundra and shrub tundra sites and unexpectedly observed that low shrubs cool permafrost by 1.21°C over the November-February period. This is despite a snowpack twice as insulating in shrubs. Using heat transfer models and finite-element simulations, we show that this winter cooling is caused by thermal bridging through frozen shrub branches. This effect largely compensates the warming effect induced by the more insulating snow in shrubs. The cooling is partly canceled in spring when shrub branches under snow absorb solar radiation and accelerate permafrost warming. The overall effect is expected to depend on snow and shrub characteristics and terrain aspect. These significant perturbations of the permafrost thermal regime by shrub branches should be considered in projections of permafrost thawing, nutrient recycling and greenhouse gas emissions.


2021 ◽  
Author(s):  
Florent Dominé ◽  
Kevin Fourteau ◽  
Ghislain Picard

<p>Warming-induced shrub expansion on Arctic tundra is generally thought to warm up permafrost, as shrubs trap blowing snow and increase the thermal insulation effect of snow, limiting permafrost winter cooling. We have monitored the thermal regime of permafrost on Bylot Island, 73°N in the Canadian high Arctic at nearby herb tundra and shrub tundra sites. Once adjusted for differences in air temperature, we find that shrubs actually cool permafrost by 0.6°C over November-March 2019, despite a snowpack twice as insulating in shrubs. By simulating the rate of propagation of thermal perturbations and using finite element calculations, we show that heat conduction through frozen shrub branches have a winter cooling effect of 1.5°C which compensates the warming effect induced by the more insulating snow in shrubs. In spring shrub branches under snow absorb solar radiation and accelerate permafrost warming. Over the whole snow season, simulations indicate that heat and radiation transfer through shrub branches result in a 0.3°C cooling effect. This is contrary to many previous studies, which concluded to a warming effect, sometimes based on environmental manipulations that may perturb the natural environment. The impact of shrubs on the permafrost thermal regime may need to be re-evaluated.</p>


2020 ◽  
Author(s):  
Roxanne Frappier ◽  
Denis Lacelle

<p>Ice wedge (IW) polygons form through thermal contraction induced by winter cooling of ice-rich permafrost which results in the formation of cracks. Hoar frost develops in the cracks in winter and meltwater infills the cracks during spring and freezes. As the cracking and infilling occurs repeatedly, IWs grow, leading to characteristic surface morphology with depressions or troughs aligned on the axis of the IW and raised rims or ridges on either side. Surface expression of IW is either characterized as low-centered polygons or high-centered polygons, the former being associated with the first stages of IW development, and the latter with IW degradation. Because IWs represent important excess ice close to the surface, considerable local subsidence and related effects on landscape parameters, such as vegetation and moisture, are likely to occur upon degradation.</p><p>IW polygons distribution, morphometry and state were characterized in the Tombstone Territorial Park (Central Yukon, Canada) using semi-automated remote sensing techniques, field observations and laboratory analyses. The data is used to define determining landscape factors for IW polygons occurrence, to characterise the stages of the IWs development and/or degradation and to estimate the volume of buried ice in the region. Results show that elevation, slope and material are important elements defining IW polygons distribution. The relationship between landscape factors and stages of development is not as clear, and, despite climate changes being homogenous in the area, IW development and degradation is very heterogenous, as shown by the differing moisture, greenness and brightness signals across the polygonal terrain.</p>


2019 ◽  
Vol 132 (7-8) ◽  
pp. 1365-1380 ◽  
Author(s):  
Robert V. Demicco ◽  
Tim K. Lowenstein

Abstract Halite precipitates in the Dead Sea during winter but re-dissolves above the thermocline upon summer warming, “focusing” halite deposition below the thermocline (Sirota et al., 2016, 2017, 2018). Here we develop an “evaporite focusing” model for evaporites (nahcolite + halite) preserved in a restricted area of the Eocene Green River Formation in the Piceance Creek Basin of Colorado, USA. Nahcolite solubility is dependent on partial pressure of carbon dioxide (pCO2) as well as temperature (T), so these models covary with both T and pCO2. In the lake that filled the Piceance Creek Basin, halite, nahcolite or mixtures of both could have precipitated during winter cooling, depending on the CO2 content in different parts of the lake. Preservation of these minerals occurs below the thermocline (>∼25 m) in deeper portions of the basin. Our modeling addresses both: (1) the restriction of evaporites in the Piceance Creek Basin to the center of the basin without recourse to later dissolution and (2) the variable mineralogy of the evaporites without recourse to changes in lake water chemistry. T from 20 to 30 °C and pCO2 between 1800 and 2800 ppm are reasonable estimates for the conditions in the Piceance Creek Basin paleolake. Other evaporites occur in the center of basins but do not extend out to the edges of the basin. Evaporite focusing caused by summer-winter T changes in the solubility of the minerals should be considered for such deposits and variable pCO2 within the evaporating brines also needs to be considered if pCO2 sensitive minerals are found.


2018 ◽  
Vol 31 (23) ◽  
pp. 9507-9518 ◽  
Author(s):  
Mathieu Barrere ◽  
Florent Domine ◽  
Maria Belke-Brea ◽  
Denis Sarrazin

The warming-induced growth of vegetation in the Arctic is responsible for various climate feedbacks. Snow–vegetation interactions are currently thought to increase the snow-insulating capacity in the Arctic and thus to limit soil winter cooling. Here, we focus on autumn and early winter processes to evaluate the impact of the presence of erect shrubs and small trees on soil temperature and freezing. We use snow height and thermal conductivity data monitored near Umiujaq, a low-Arctic site in northern Quebec, Canada (56°N, 76°W), to estimate the snow thermal insulance in different vegetation covers. We furthermore conducted a field campaign in autumn 2015. Results show that the occurrence of melting at the beginning of the snow season counteracted the soil warming effect of snow–vegetation interactions. Refrozen layers on the surface prevented wind drift and the preferential accumulation of snow in shrubs or trees. Snowmelt was more intense in high vegetation covers, where the formation of refrozen layers of high thermal conductivity at the base of the snowpack facilitated the release of soil heat, accelerating its cooling. Consequently, the soil was not necessarily the warmest under high vegetation covers as long as melting events occurred. We conclude that under conditions where melting events become more frequent in autumn, as expected under climate warming, conditions become more favorable to maintain a negative feedback among the growth of erect vegetation, snow, and soil temperature in the Arctic, rather than a positive feedback as described under colder climates.


Sign in / Sign up

Export Citation Format

Share Document