scholarly journals Nicotinamide nucleotide transhydrogenase (NNT) regulates mitochondrial ROS and endothelial dysfunction in response to angiotensin II

Redox Biology ◽  
2020 ◽  
Vol 36 ◽  
pp. 101650
Author(s):  
K.N. Shashanka Rao ◽  
Xinggui Shen ◽  
Sibile Pardue ◽  
David M. Krzywanski
2021 ◽  
Vol 178 (8) ◽  
pp. 1836-1854
Author(s):  
Miguel A. Olivencia ◽  
Marta Martínez‐Casales ◽  
Diego A. Peraza ◽  
Ana B. García‐Redondo ◽  
Gema Mondéjar‐Parreño ◽  
...  

2006 ◽  
Vol 291 (3) ◽  
pp. F619-F628 ◽  
Author(s):  
Zhengrong Guan ◽  
Glenda Gobé ◽  
Desley Willgoss ◽  
Zoltán H. Endre

Endothelial dysfunction in ischemic acute renal failure (IARF) has been attributed to both direct endothelial injury and to altered endothelial nitric oxide synthase (eNOS) activity, with either maximal upregulation of eNOS or inhibition of eNOS by excess nitric oxide (NO) derived from iNOS. We investigated renal endothelial dysfunction in kidneys from Sprague-Dawley rats by assessing autoregulation and endothelium-dependent vasorelaxation 24 h after unilateral (U) or bilateral (B) renal artery occlusion for 30 (U30, B30) or 60 min (U60, B60) and in sham-operated controls. Although renal failure was induced in all degrees of ischemia, neither endothelial dysfunction nor altered facilitation of autoregulation by 75 pM angiotensin II was detected in U30, U60, or B30 kidneys. Baseline and angiotensin II-facilitated autoregulation were impaired, methacholine EC50 was increased, and endothelium-derived hyperpolarizing factor (EDHF) activity was preserved in B60 kidneys. Increasing angiotensin II concentration restored autoregulation and increased renal vascular resistance (RVR) in B60 kidneys; this facilitated autoregulation, and the increase in RVR was abolished by 100 μM furosemide. Autoregulation was enhanced by Nω-nitro-l-arginine methyl ester. Peri-ischemic inhibition of inducible NOS ameliorated renal failure but did not prevent endothelial dysfunction or impaired autoregulation. There was no significant structural injury to the afferent arterioles with ischemia. These results suggest that tubuloglomerular feedback is preserved in IARF but that excess NO and probably EDHF produce endothelial dysfunction and antagonize autoregulation. The threshold for injury-producing, detectable endothelial dysfunction was higher than for the loss of glomerular filtration rate. Arteriolar endothelial dysfunction after prolonged IARF is predominantly functional rather than structural.


2013 ◽  
Vol 288 (20) ◽  
pp. 14497-14509 ◽  
Author(s):  
Eisuke Amiya ◽  
Masafumi Watanabe ◽  
Norihiko Takeda ◽  
Tetsuya Saito ◽  
Taro Shiga ◽  
...  

Vascular endothelial function is impaired in hypercholesterolemia partly because of injury by modified LDL. In addition to modified LDL, free cholesterol (FC) is thought to play an important role in the development of endothelial dysfunction, although the precise mechanisms remain to be elucidated. The aim of this study was to clarify the mechanisms of endothelial dysfunction induced by an FC-rich environment. Loading cultured human aortic endothelial cells with FC induced the formation of vesicular structures composed of FC-rich membranes. Raft proteins such as phospho-caveolin-1 (Tyr-14) and small GTPase Rac were accumulated toward FC-rich membranes around vesicular structures. In the presence of these vesicles, angiotensin II-induced production of reactive oxygen species (ROS) was considerably enhanced. This ROS shifted endothelial NOS (eNOS) toward vesicle membranes and vesicles with a FC-rich domain trafficked toward perinuclear late endosomes/lysosomes, which resulted in the deterioration of eNOS Ser-1177 phosphorylation and NO production. Angiotensin II-induced ROS decreased the bioavailability of eNOS under the FC-enriched condition.


2011 ◽  
Vol 64 (5) ◽  
pp. 535-546 ◽  
Author(s):  
Kumiko Taguchi ◽  
Tsuneo Kobayashi ◽  
Yasuhiro Takenouchi ◽  
Takayuki Matsumoto ◽  
Katsuo Kamata

2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Frank M. Faraci ◽  
Dale Kinzenbaw ◽  
Laura I. Schrader ◽  
Sean P. Didion

Circulation ◽  
2004 ◽  
Vol 110 (19) ◽  
pp. 3062-3067 ◽  
Author(s):  
Sven Wassmann ◽  
Thomas Czech ◽  
Martin van Eickels ◽  
Ingrid Fleming ◽  
Michael Böhm ◽  
...  

2008 ◽  
Vol 295 (4) ◽  
pp. F1134-F1141 ◽  
Author(s):  
Laura G. Sánchez-Lozada ◽  
Virgilia Soto ◽  
Edilia Tapia ◽  
Carmen Avila-Casado ◽  
Yuri Y. Sautin ◽  
...  

Endothelial dysfunction is a characteristic feature during the renal damage induced by mild hyperuricemia. The mechanism by which uric acid reduces the bioavailability of intrarenal nitric oxide is not known. We tested the hypothesis that oxidative stress might contribute to the endothelial dysfunction and glomerular hemodynamic changes that occur with hyperuricemia. Hyperuricemia was induced in Sprague-Dawley rats by administration of the uricase inhibitor, oxonic acid (750 mg/kg per day). The superoxide scavenger, tempol (15 mg/kg per day), or placebo was administered simultaneously with the oxonic acid. All groups were evaluated throughout a 5-wk period. Kidneys were fixed by perfusion and afferent arteriole morphology, and tubulointerstitial 3-nitrotyrosine, 4-hydroxynonenal, NOX-4 subunit of renal NADPH-oxidase, and angiotensin II were quantified. Hyperuricemia induced intrarenal oxidative stress, increased expression of NOX-4 and angiotensin II, and decreased nitric oxide bioavailability, systemic hypertension, renal vasoconstriction, and afferent arteriolopathy. Tempol treatment reversed the systemic and renal alterations induced by hyperuricemia despite equivalent hyperuricemia. Moreover, because tempol prevented the development of preglomerular damage and decreased blood pressure, glomerular pressure was maintained at normal values as well. Mild hyperuricemia induced by uricase inhibition causes intrarenal oxidative stress, which contributes to the development of the systemic hypertension and the renal abnormalities induced by increased uric acid. Scavenging of the superoxide anion in this setting attenuates the adverse effects induced by hyperuricemia.


Sign in / Sign up

Export Citation Format

Share Document