scholarly journals Role of oxidative stress in the renal abnormalities induced by experimental hyperuricemia

2008 ◽  
Vol 295 (4) ◽  
pp. F1134-F1141 ◽  
Author(s):  
Laura G. Sánchez-Lozada ◽  
Virgilia Soto ◽  
Edilia Tapia ◽  
Carmen Avila-Casado ◽  
Yuri Y. Sautin ◽  
...  

Endothelial dysfunction is a characteristic feature during the renal damage induced by mild hyperuricemia. The mechanism by which uric acid reduces the bioavailability of intrarenal nitric oxide is not known. We tested the hypothesis that oxidative stress might contribute to the endothelial dysfunction and glomerular hemodynamic changes that occur with hyperuricemia. Hyperuricemia was induced in Sprague-Dawley rats by administration of the uricase inhibitor, oxonic acid (750 mg/kg per day). The superoxide scavenger, tempol (15 mg/kg per day), or placebo was administered simultaneously with the oxonic acid. All groups were evaluated throughout a 5-wk period. Kidneys were fixed by perfusion and afferent arteriole morphology, and tubulointerstitial 3-nitrotyrosine, 4-hydroxynonenal, NOX-4 subunit of renal NADPH-oxidase, and angiotensin II were quantified. Hyperuricemia induced intrarenal oxidative stress, increased expression of NOX-4 and angiotensin II, and decreased nitric oxide bioavailability, systemic hypertension, renal vasoconstriction, and afferent arteriolopathy. Tempol treatment reversed the systemic and renal alterations induced by hyperuricemia despite equivalent hyperuricemia. Moreover, because tempol prevented the development of preglomerular damage and decreased blood pressure, glomerular pressure was maintained at normal values as well. Mild hyperuricemia induced by uricase inhibition causes intrarenal oxidative stress, which contributes to the development of the systemic hypertension and the renal abnormalities induced by increased uric acid. Scavenging of the superoxide anion in this setting attenuates the adverse effects induced by hyperuricemia.

2006 ◽  
Vol 291 (3) ◽  
pp. F619-F628 ◽  
Author(s):  
Zhengrong Guan ◽  
Glenda Gobé ◽  
Desley Willgoss ◽  
Zoltán H. Endre

Endothelial dysfunction in ischemic acute renal failure (IARF) has been attributed to both direct endothelial injury and to altered endothelial nitric oxide synthase (eNOS) activity, with either maximal upregulation of eNOS or inhibition of eNOS by excess nitric oxide (NO) derived from iNOS. We investigated renal endothelial dysfunction in kidneys from Sprague-Dawley rats by assessing autoregulation and endothelium-dependent vasorelaxation 24 h after unilateral (U) or bilateral (B) renal artery occlusion for 30 (U30, B30) or 60 min (U60, B60) and in sham-operated controls. Although renal failure was induced in all degrees of ischemia, neither endothelial dysfunction nor altered facilitation of autoregulation by 75 pM angiotensin II was detected in U30, U60, or B30 kidneys. Baseline and angiotensin II-facilitated autoregulation were impaired, methacholine EC50 was increased, and endothelium-derived hyperpolarizing factor (EDHF) activity was preserved in B60 kidneys. Increasing angiotensin II concentration restored autoregulation and increased renal vascular resistance (RVR) in B60 kidneys; this facilitated autoregulation, and the increase in RVR was abolished by 100 μM furosemide. Autoregulation was enhanced by Nω-nitro-l-arginine methyl ester. Peri-ischemic inhibition of inducible NOS ameliorated renal failure but did not prevent endothelial dysfunction or impaired autoregulation. There was no significant structural injury to the afferent arterioles with ischemia. These results suggest that tubuloglomerular feedback is preserved in IARF but that excess NO and probably EDHF produce endothelial dysfunction and antagonize autoregulation. The threshold for injury-producing, detectable endothelial dysfunction was higher than for the loss of glomerular filtration rate. Arteriolar endothelial dysfunction after prolonged IARF is predominantly functional rather than structural.


2018 ◽  
Vol 19 (2) ◽  
pp. 147032031877889 ◽  
Author(s):  
Jing Dai ◽  
Rui Liu ◽  
Jinjie Zhao ◽  
Aijie Zhang

The aim of this study was to investigate the protective effects of sulfur dioxide (SO2) on the endothelial function of the aorta in D-galactose (D-gal)-induced aging rats. Sprague Dawley rats were randomized into a D-gal group, a D-gal + SO2 group and a control group, then injected with D-gal, D-gal + SO2 donor or equivalent volumes of saline, respectively, for 8 consecutive weeks. After 8 weeks, the mean arterial pressure was significantly increased in the D-gal group, but was lowered by SO2. SO2 significantly ameliorated the endothelial dysfunction induced by D-gal treatment. The vasorelaxant effect of SO2 was associated with the elevated nitric oxide levels and upregulated phosphorylation of endothelial nitric oxide synthase. In the D-gal group, the concentration of angiotensin II in the plasma was significantly increased, but was decreased by SO2. Moreover, levels of vascular tissue hydrogen peroxide (H2O2) and malondialdehyde were significantly lower in SO2-treated groups than those in the D-gal group. Western blot analysis showed that the expressions of oxidative stress-related proteins (the angiotensin II type 1 receptor (AT1R), and nicotinamide adenine dinucleotide phosphate oxidase subunits) were increased in the D-gal group, while they were decreased after treatment with SO2. In conclusion, SO2 attenuated endothelial dysfunction in association with the inhibition of oxidative stress injury and the downregulation of the angiotensin II/AT1R pathway in D-gal-induced aging rats.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Sirinat Pengnet ◽  
Sakdina Prommaouan ◽  
Phinsuda Sumarithum ◽  
Wachirawadee Malakul

Hypercholesterolaemia is associated with oxidative stress and endothelial dysfunction and leads to the development of atherosclerosis. Naringin exhibits cardiovascular protective and antioxidant properties. Therefore, the aim of this study was to assess the effect of naringin administration on vascular oxidative stress and endothelial dysfunction in hypercholesterolaemic rats and to elucidate its underlying mechanism. Sprague Dawley rats were fed a diet with 1.5% cholesterol (HCD) for 8 weeks to induce hypercholesterolaemia. Naringin (100 mg/kg body weight) was orally administrated to rats during the last 4 weeks of the diet treatment. After 8 weeks, the thoracic aorta was isolated to determine vascular function and nitric oxide (NO) levels. The aortic superoxide anion (O2−) level was detected using dihydroethidium (DHE) fluorescence staining. Protein expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits, and inducible nitric oxide synthase (iNOS), as well as oxidative damage markers, was also evaluated in aortae. Naringin treatment of hypercholesterolaemic rats enhanced aortic NO levels, restored endothelium-dependent responses to acetylcholine (ACh), and reduced aortic O2− levels. Furthermore, naringin treatment decreased LOX-1, NADPH oxidase subunits (p47phox, Nox2, and Nox4), and iNOS as well as oxidative damage markers (3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE)) expression in aortic tissues from hypercholesterolaemic rats. These results demonstrate that naringin treatment improves endothelium dysfunction in hypercholesterolaemic rats, at least partially by decreasing oxidative stress via downregulation of LOX-1 and NADPH oxidase.


2007 ◽  
Vol 292 (4) ◽  
pp. F1238-F1244 ◽  
Author(s):  
Laura G. Sánchez-Lozada ◽  
Edilia Tapia ◽  
Rubén López-Molina ◽  
Tomás Nepomuceno ◽  
Virgilia Soto ◽  
...  

Experimental hyperuricemia (HU) results in preglomerular arteriolopathy, cortical vasoconstriction, and glomerular hypertension. Recently, uric acid has been shown to induce endothelial dysfunction. We therefore studied the effect of acute and chronic administration of l-arginine (a substrate for endothelial nitric oxide synthase) on the renal hemodynamic and vascular structural alterations induced by HU. To induce HU, oxonic acid (OA; 750 mg·kg−1·day−1) was administered in male Sprague-Dawley rats. To study the acute effect of arginine, nine rats received l-arginine (l-Arg; 15 mg·kg−1·min−1) during micropuncture. To elucidate the chronic effect of l-Arg, OA + 1% l-Arg ( n = 8) and OA + 2.5% l-Arg ( n = 6; drinking water) were evaluated throughout the 5-wk period. Eight normal control (N), and eight OA, rats were also studied. Kidneys were fixed by perfusion and afferent arteriole morphology was evaluated. HU rats developed the renal functional and structural alterations described and had suppressed urinary excretion of NO2−/NO3−. Acute stimulation of nitric oxide (NO) synthesis markedly increased urinary NO2−/NO3−, lowered systemic blood pressure, and relieved cortical vasoconstriction despite a significant increment of glomerular hypertension and afferent arteriole damage. Increasing doses of chronic l-Arg were associated with increasing excretion of urinary NO2−/NO3−, reduction of systemic hypertension, and prevention of cortical vasoconstriction (2.5% l-Arg). In addition, both doses prevented glomerular hypertension and preglomerular arteriolopathy. Thus an acute relief of renal vasoconstriction in the setting of afferent arteriole damage cannot reverse glomerular hypertension, likely due to impairment in preglomerular autoregulation. On the other hand, chronic l-Arg preserved arteriolar structures probably mediated by the antiproliferative effect of NO on vascular smooth muscle cells.


2007 ◽  
Vol 292 (1) ◽  
pp. H83-H92 ◽  
Author(s):  
Armin Just ◽  
Andrea J. M. Olson ◽  
Christina L. Whitten ◽  
William J. Arendshorst

NAD(P)H oxidases (NOX) and reactive oxygen species (ROS) are involved in vasoconstriction and vascular remodeling during hypertension produced by chronic angiotensin II (ANG II) infusion. These effects are thought to be mediated largely through superoxide anion (O2−) scavenging of nitric oxide (NO). Little is known about the role of ROS in acute vasoconstrictor responses to agonists. We investigated renal blood flow (RBF) reactivity to ANG II (4 ng), norepinephrine (NE, 20 ng), and α1-adrenergic agonist phenylephrine (PE, 200 ng) injected into the renal artery (ira) of anesthetized Sprague-Dawley rats. The NOX inhibitor apocynin (1–4 mg·kg−1·min−1 ira, 2 min) or the superoxide dismutase mimetic Tempol (1.5–5 mg·kg−1·min−1 ira, 2 min) rapidly increased resting RBF by 8 ± 1% ( P < 0.001) or 3 ± 1% ( P < 0.05), respectively. During NO synthase (NOS) inhibition ( Nω-nitro-l-arginine methyl ester, 25 mg/kg iv), the vasodilation tended to increase (apocynin 13 ± 4%, Tempol 10 ± 1%). During control conditions, both ANG II and NE reduced RBF by 24 ± 4%. Apocynin dose dependently reduced the constriction by up to 44% ( P < 0.05). Similarly, Tempol blocked the acute actions of ANG II and NE by up to 48–49% ( P < 0.05). In other animals, apocynin (4 mg·kg−1·min−1 ira) attenuated vasoconstriction to ANG II, NE, and PE by 46–62% ( P < 0.01). During NOS inhibition, apocynin reduced the reactivity to ANG II and NE by 60–72% ( P < 0.01), and Tempol reduced it by 58–66% ( P < 0.001). We conclude that NOX-derived ROS substantially contribute to basal RBF as well as to signaling of acute renal vasoconstrictor responses to ANG II, NE, and PE in normal rats. These effects are due to O2− rather than H2O2, occur rapidly, and are independent of scavenging of NO.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 523
Author(s):  
Putcharawipa Maneesai ◽  
Metee Iampanichakul ◽  
Nisita Chaihongsa ◽  
Anuson Poasakate ◽  
Prapassorn Potue ◽  
...  

In this study, we examine whether Clitoria ternatea Linn. (CT) can prevent Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced cardiac and vascular dysfunction in rats. Male Sprague Dawley rats were given L-NAME (40 mg/kg, drinking water) and orally administered with CT extract (300 mg/kg/day) or lisinopril (2.5 mg/kg/day) for 5 weeks. The main phytochemical components of the CT extract were found to be flavonoids. The CT extract alleviated the high blood pressure in rats receiving L-NAME. Decreased vasorelaxation responses to acetylcholine and enhanced contractile responses to sympathetic nerve stimulation in aortic rings and mesenteric vascular beds of L-NAME treated rats were ameliorated by CT extract supplementation. Left ventricular hypertrophy and dysfunction were developed in L-NAME rats, which were partially prevented by CT extract treatment. The CT extract alleviated upregulated endothelial nitric oxide synthase expression, decreased plasma nitrate/nitrite levels, and increased oxidative stress in L-NAME rats. It suppressed high levels of serum angiotensin-converting enzyme activity, plasma angiotensin II, and cardiac angiotensin II type 1 receptor, NADPH oxidases 2, nuclear factor-kappa B, and tumor necrosis factor-alpha expression. The CT extract, therefore, partially prevented L-NAME-induced hypertension and cardiovascular alterations in rats. These effects might be related to a reduction in the oxidative stress and renin–angiotensin system activation due to L-NAME in rats.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Jiantong Hou ◽  
Gaoliang Yan ◽  
Bo Liu ◽  
Boqian Zhu ◽  
Yong Qiao ◽  
...  

Background. Renal vasoconstriction, oxidative stress, endothelial dysfunction, and apoptosis are the major causes of contrast-induced nephropathy (CIN). The aim of this study was to evaluate the protective effects of enalapril maleate and folic acid tablets on CIN in diabetic rats.Methods. Thirty-two Sprague-Dawley rats were divided into four groups: CIN (C), CIN + enalapril maleate (CE), CIN + folic acid (CF), and CIN + enalapril maleate and folic acid tablets (CEF). CE, CF, and CEF rats were treated orally with enalapril maleate, folic acid, or enalapril maleate and folic acid tablets, respectively, for 5 days. CIN was induced in all groups followed by analyzed biochemical parameters, oxidative stress markers, endothelial dysfunction parameters, renal histopathology, and TUNEL staining.Results. Serum creatinine, blood urea nitrogen, and malondialdehyde levels were lower in the CEF group than in the C group. Homocysteine, superoxide dismutase, glutathione peroxidase, and nitric oxide levels were higher in the CEF group than in the C group. Histopathology scores and percentage of apoptotic kidney cells in the CEF group were significantly decreased compared with those in the C group.Conclusions. These results suggest that enalapril maleate and folic acid tablets have a protective effect against CIN in diabetic rats.


1991 ◽  
Vol 2 (6) ◽  
pp. 1072-1077
Author(s):  
A J King ◽  
P Mercer ◽  
J L Troy ◽  
B M Brenner

Endogenous nitric oxide is an important modulator of vascular smooth muscle tone. The role of nitric oxide in the vascular adaptation to systemic hypertension was examined by using N omega-monomethyl-L-arginine (L-NMMA; 110 micrograms/kg/min), a competitive inhibitor of the conversion of L-arginine to nitric oxide. L-NMMA or saline vehicle (9.6 microL/min) was infused i.v. into several rat models of acute and chronic systemic hypertension. The response to L-NMMA was compared either in uninephrectomized Sprague-Dawley rats treated with deoxycorticosterone on either a high- or low-sodium diet or in untreated uninephrectomized rats on normal chow. Hypertensive deoxycorticosterone rats had a significantly greater pressor response to L-NMMA (139 +/- 2 to 169 +/- 3 mm Hg; N = 9) than did normotensive uninephrectomized rats (112 +/- 4 to 129 +/- 3 mm Hg; N = 7) or deoxycortisterone treated rats on a low-sodium diet (108 +/- 2 to 121 +/- 3 mm Hg; N = 9). By contrast, hypertension induced by the vasoconstrictor angiotensin II did not have an enhanced response (134 +/- 3 to 154 +/- 4 mm Hg; N = 7) nor did spontaneously hypertensive rats (164 +/- 4 to 175 +/- 4 mm Hg; N = 6). This dose of L-NMMA had minimal effects on renal hemodynamics in the normotensive and hypertensive animals, except for those receiving angiotensin II where it led to substantial reductions of inulin and para-aminohippurate clearance. In conclusion, these data point to a role for nitric oxide in the vascular adaptation to volume-mediated hypertension, an effect that was not observed in vasoconstrictor-induced hypertension.


Author(s):  
Theresa Chikopela ◽  
Douglas C. Heimburger ◽  
Longa Kaluba ◽  
Pharaoh Hamambulu ◽  
Newton Simfukwe ◽  
...  

Abstract Background Endothelial function is dependent on the balance between vasoconstrictive and vasodilatory substances. The endothelium ability to produce nitric oxide is one of the most crucial mechanisms in regulating vascular tone. An increase in inducible nitric oxide synthase contributes to endothelial dysfunction in overweight persons, while oxidative stress contributes to the conversion of nitric oxide to peroxynitrite (measured as nitrotyrosine in vivo) in underweight persons. The objective of this study was to elucidate the interaction of body composition and oxidative stress on vascular function and peroxynitrite. This was done through an experimental design with three weight groups (underweight, normal weight and overweight), with four treatment arms in each. Plasma nitrotyrosine levels were measured 15–20 h post lipopolysaccharide (LPS) treatment, as were aortic ring tension changes. Acetylcholine (ACh) and sodium nitroprusside (SNP) challenges were used to observe endothelial-dependent and endothelial-independent vascular relaxation after pre-constriction of aortic rings with phenylephrine. Results Nitrotyrosine levels in saline-treated rats were similar among the weight groups. There was a significant increase in nitrotyrosine levels between saline-treated rats and those treated with the highest lipopolysaccharide doses in each of the weight groups. In response to ACh challenge, Rmax (percentage reduction in aortic tension) was lowest in overweight rats (112%). In response to SNP, there was an insignificantly lower Rmax in the underweight rats (106%) compared to the normal weight rats (112%). Overweight rats had a significant decrease in Rmax (83%) in response to SNP, signifying involvement of a more chronic process in tension reduction changes. A lower Rmax accompanied an increase in peroxynitrite after acetylcholine challenge in all weight groups. Conclusions Endothelial dysfunction, observed as an impairment in the ability to reduce tension, is associated with increased plasma peroxynitrite levels across the spectrum of body mass. In higher-BMI rats, an additional role is played by vascular smooth muscle in the causation of endothelial dysfunction.


2016 ◽  
Vol 310 (1) ◽  
pp. H39-H48 ◽  
Author(s):  
Masashi Mukohda ◽  
Madeliene Stump ◽  
Pimonrat Ketsawatsomkron ◽  
Chunyan Hu ◽  
Frederick W. Quelle ◽  
...  

Loss of peroxisome proliferator-activated receptor (PPAR)-γ function in the vascular endothelium enhances atherosclerosis and NF-κB target gene expression in high-fat diet-fed apolipoprotein E-deficient mice. The mechanisms by which endothelial PPAR-γ regulates inflammatory responses and protects against atherosclerosis remain unclear. To assess functional interactions between PPAR-γ and inflammation, we used a model of IL-1β-induced aortic dysfunction in transgenic mice with endothelium-specific overexpression of either wild-type (E-WT) or dominant negative PPAR-γ (E-V290M). IL-1β dose dependently decreased IκB-α, increased phospho-p65, and increased luciferase activity in the aorta of NF-κB-LUC transgenic mice. IL-1β also dose dependently reduced endothelial-dependent relaxation by ACh. The loss of ACh responsiveness was partially improved by pretreatment of the vessels with the PPAR-γ agonist rosiglitazone or in E-WT. Conversely, IL-1β-induced endothelial dysfunction was worsened in the aorta from E-V290M mice. Although IL-1β increased the expression of NF-κB target genes, NF-κB p65 inhibitor did not alleviate endothelial dysfunction induced by IL-1β. Tempol, a SOD mimetic, partially restored ACh responsiveness in the IL-1β-treated aorta. Notably, tempol only modestly improved protection in the E-WT aorta but had an increased protective effect in the E-V290M aorta compared with the aorta from nontransgenic mice, suggesting that PPAR-γ-mediated protection involves antioxidant effects. IL-1β increased ROS and decreased the phospho-endothelial nitric oxide synthase (Ser1177)-to-endothelial nitric oxide synthase ratio in the nontransgenic aorta. These effects were completely abolished in the aorta with endothelial overexpression of WT PPAR-γ but were worsened in the aorta with E-V290M even in the absence of IL-1β. We conclude that PPAR-γ protects against IL-1β-mediated endothelial dysfunction through a reduction of oxidative stress responses but not by blunting IL-1β-mediated NF-κB activity.


Sign in / Sign up

Export Citation Format

Share Document