scholarly journals Calpains play an essential role in mechanical ventilation-induced diaphragmatic weakness and mitochondrial dysfunction

Redox Biology ◽  
2021 ◽  
Vol 38 ◽  
pp. 101802
Author(s):  
Hayden W. Hyatt ◽  
Mustafa Ozdemir ◽  
Toshinori Yoshihara ◽  
Branden L. Nguyen ◽  
Rafael Deminice ◽  
...  
2013 ◽  
Vol 49 (6) ◽  
pp. 943-950 ◽  
Author(s):  
Veniamin Ratner ◽  
Sergey A. Sosunov ◽  
Zoya V. Niatsetskaya ◽  
Irina V. Utkina-Sosunova ◽  
Vadim S. Ten

Author(s):  
Ana Paula Azevêdo Macêdo ◽  
Adelino Sanchez Ramos da Silva ◽  
Vitor Rosetto Muñoz ◽  
Eduardo Rochete Ropelle ◽  
José Rodrigo Pauli

2009 ◽  
Vol 106 (2) ◽  
pp. 385-394 ◽  
Author(s):  
Melissa A. Whidden ◽  
Joseph M. McClung ◽  
Darin J. Falk ◽  
Matthew B. Hudson ◽  
Ashley J. Smuder ◽  
...  

Respiratory muscle weakness resulting from both diaphragmatic contractile dysfunction and atrophy has been hypothesized to contribute to the weaning difficulties associated with prolonged mechanical ventilation (MV). While it is clear that oxidative injury contributes to MV-induced diaphragmatic weakness, the source(s) of oxidants in the diaphragm during MV remain unknown. These experiments tested the hypothesis that xanthine oxidase (XO) contributes to MV-induced oxidant production in the rat diaphragm and that oxypurinol, a XO inhibitor, would attenuate MV-induced diaphragmatic oxidative stress, contractile dysfunction, and atrophy. Adult female Sprague-Dawley rats were randomly assigned to one of six experimental groups: 1) control, 2) control with oxypurinol, 3) 12 h of MV, 4) 12 h of MV with oxypurinol, 5) 18 h of MV, or 6) 18 h of MV with oxypurinol. XO activity was significantly elevated in the diaphragm after MV, and oxypurinol administration inhibited this activity and provided protection against MV-induced oxidative stress and contractile dysfunction. Specifically, oxypurinol treatment partially attenuated both protein oxidation and lipid peroxidation in the diaphragm during MV. Further, XO inhibition retarded MV-induced diaphragmatic contractile dysfunction at stimulation frequencies >60 Hz. Collectively, these results suggest that oxidant production by XO contributes to MV-induced oxidative injury and contractile dysfunction in the diaphragm. Nonetheless, the failure of XO inhibition to completely prevent MV-induced diaphragmatic oxidative damage suggests that other sources of oxidant production are active in the diaphragm during prolonged MV.


2015 ◽  
Vol 118 (9) ◽  
pp. 1161-1171 ◽  
Author(s):  
Martin Picard ◽  
Ilan Azuelos ◽  
Boris Jung ◽  
Christian Giordano ◽  
Stefan Matecki ◽  
...  

The diaphragm is a unique skeletal muscle designed to be rhythmically active throughout life, such that its sustained inactivation by the medical intervention of mechanical ventilation (MV) represents an unanticipated physiological state in evolutionary terms. Within a short period after initiating MV, the diaphragm develops muscle atrophy, damage, and diminished strength, and many of these features appear to arise from mitochondrial dysfunction. Notably, in response to metabolic perturbations, mitochondria fuse, divide, and interact with neighboring organelles to remodel their shape and functional properties—a process collectively known as mitochondrial dynamics. Using a quantitative electron microscopy approach, here we show that diaphragm contractile inactivity induced by 6 h of MV in mice leads to fragmentation of intermyofibrillar (IMF) but not subsarcolemmal (SS) mitochondria. Furthermore, physical interactions between adjacent organellar membranes were less abundant in IMF mitochondria during MV. The profusion proteins Mfn2 and OPA1 were unchanged, whereas abundance and activation status of the profission protein Drp1 were increased in the diaphragm following MV. Overall, our results suggest that mitochondrial morphological abnormalities characterized by excessive fission-fragmentation represent early events during MV, which could potentially contribute to the rapid onset of mitochondrial dysfunction, maladaptive signaling, and associated contractile dysfunction of the diaphragm.


Author(s):  
Martin Picard ◽  
Feng Liang ◽  
Sabbah N. Hussain ◽  
Peter Goldberg ◽  
Gawiyou Danialou ◽  
...  

2011 ◽  
Vol 183 (3) ◽  
pp. 364-371 ◽  
Author(s):  
Samir Jaber ◽  
Basil J. Petrof ◽  
Boris Jung ◽  
Gérald Chanques ◽  
Jean-Philippe Berthet ◽  
...  

2012 ◽  
Vol 186 (11) ◽  
pp. 1140-1149 ◽  
Author(s):  
Martin Picard ◽  
Boris Jung ◽  
Feng Liang ◽  
Ilan Azuelos ◽  
Sabah Hussain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document