scholarly journals Parallel evaluation of nucleophilic and electrophilic chemical probes for sulfenic acid: Reactivity, selectivity and biocompatibility

Redox Biology ◽  
2021 ◽  
pp. 102072
Author(s):  
Yunlong Shi ◽  
Kate S. Carroll
2021 ◽  
Author(s):  
Yunlong Shi ◽  
Kate S Carroll

S-sulfenylation of cysteine thiols (Cys-SOH) is a regulatory posttranslational modification in redox signaling and an important intermediate to other cysteine chemotypes. Owing to the dual chemical nature of the sulfur in sulfenic acid, both nucleophilic and electrophilic chemical probes have been developed to react with and detect Cys-SOH; however, the efficiency of existing probes has not been evaluated in a side-by-side comparison. Here, we employ small-molecule and protein models of Cys-SOH and compare the chemical probe reactivity. These data clearly show that 1,3-diketone-based nucleophilic probes react more efficiently with sulfenic acid as compared to strained alkene/alkyne electrophilic probes. Kinetic experiments that rigorously address the selectivity of the 1,3-diketone-based probes are also reported. Consideration of these data alongside relative cellular abundance, indicates that biological electrophiles, including cyclic sulfenamides, aldehydes, disulfides and hydrogen peroxide, are not meaningful targets of 1,3-diketone-based nucleophilic probes, which still remain the most viable tools for the bioorthogonal detection of Cys-SOH.


2019 ◽  
Author(s):  
Lisa Alcock ◽  
Maike Langini ◽  
Kai Stühler ◽  
Marc Remke ◽  
Michael Perkins ◽  
...  

<p>Detection of cysteine sulfenic acid in live cells is critical in advancing our understanding of cysteine redox chemistry and its biological function. Accordingly, there is a need to develop sulfenic acid-specific chemical probes with distinct reaction mechanisms to facilitate proteome-wide detection of this important posttranslational modification. Herein, we report the first whole-cell proteomics analysis using a norbornene probe to detect cysteine sulfenic acid in live HeLa cells. Comparison of the enriched proteins to those identified using dimedone and other <i>C</i>-nucleophilic probes revealed a complementary reactivity profile. Remarkably, 148 new members of the sulfenome were identified. These discoveries highlight how subtle differences in chemical reactivity of both the probes and cysteine residues influence detection. Overall, this study expands our understanding of protein oxidation at cysteine and reveals new proteins to consider for future studies of cysteine oxidation, redox regulation and signaling, and the biochemistry of oxidative stress. </p>


2019 ◽  
Author(s):  
Lisa Alcock ◽  
Maike Langini ◽  
Kai Stühler ◽  
Marc Remke ◽  
Michael Perkins ◽  
...  

<p>Detection of cysteine sulfenic acid in live cells is critical in advancing our understanding of cysteine redox chemistry and its biological function. Accordingly, there is a need to develop sulfenic acid-specific chemical probes with distinct reaction mechanisms to facilitate proteome-wide detection of this important posttranslational modification. Herein, we report the first whole-cell proteomics analysis using a norbornene probe to detect cysteine sulfenic acid in live HeLa cells. Comparison of the enriched proteins to those identified using dimedone and other <i>C</i>-nucleophilic probes revealed a complementary reactivity profile. Remarkably, 148 new members of the sulfenome were identified. These discoveries highlight how subtle differences in chemical reactivity of both the probes and cysteine residues influence detection. Overall, this study expands our understanding of protein oxidation at cysteine and reveals new proteins to consider for future studies of cysteine oxidation, redox regulation and signaling, and the biochemistry of oxidative stress. </p>


Author(s):  
Kimberly J. Nelson ◽  
Chananat Klomsiri ◽  
Simona G. Codreanu ◽  
Laura Soito ◽  
Daniel C. Liebler ◽  
...  

2005 ◽  
Vol 16 (6) ◽  
pp. 1624-1628 ◽  
Author(s):  
Leslie B. Poole ◽  
Bu-Bing Zeng ◽  
Sarah A. Knaggs ◽  
Mamudu Yakubu ◽  
S. Bruce King

2011 ◽  
Vol 51 ◽  
pp. S20
Author(s):  
Jiang Qian ◽  
Chananat Klomsiri ◽  
Stephen B. King ◽  
Leslie B. Poole ◽  
Allen W. Tsang ◽  
...  

2020 ◽  
Author(s):  
Luke Adams ◽  
Lorna E. Wilkinson-White ◽  
Menachem J. Gunzburg ◽  
Stephen J. Headey ◽  
Martin J. Scanlon ◽  
...  

The development of low-affinity fragment hits into higher affinity leads is a major hurdle in fragment-based drug design. Here we demonstrate an approach for the Rapid Elaboration of Fragments into Leads (REFiL) applying an integrated workflow that provides a systematic approach to generate higher-affinity binders without the need for structural information. The workflow involves the selection of commercial analogues of fragment hits to generate preliminary structure-activity relationships. This is followed by parallel microscale chemistry using chemoinformatically designed reagent libraries to rapidly explore chemical diversity. Upon completion of a fragment screen against Bromodomain-3 extra terminal (BRD3-ET) domain we applied the REFiL workflow, which allowed us to develop a series of tetrahydrocarbazole ligands that bind to the peptide binding site of BRD3-ET. With REFiL we were able to rapidly improve binding affinity >30-fold. The REFiL workflow can be applied readily to a broad range of protein targets without the need of a structure, allowing the efficient evolution of low-affinity fragments into higher affinity leads and chemical probes.<br>


Sign in / Sign up

Export Citation Format

Share Document