Numerical model simulation of island-headland induced eddies in a site for tidal current energy extraction

2017 ◽  
Vol 101 ◽  
pp. 204-213 ◽  
Author(s):  
Jie Lin ◽  
Binliang Lin ◽  
Jian Sun ◽  
Yaling Chen
2014 ◽  
Vol 687-691 ◽  
pp. 674-678
Author(s):  
Jing Liu ◽  
Yong Ma ◽  
Jia Xin Li

In this paper, different numerical methods on tidal current energy extraction of near-field and far-field hydrodynamic response are used to conduct simulation study. And the following aspects are used for simulation, including CFD model is used to establish three-dimensional numerical flume, layout plan of more tidal current energy electric generator with different spaces is designed, changes in near-field hydrodynamic are stimulated as well as the calculated results are compared and analyzed, in order to more clearly understand the influence of tidal current energy generator to the surrounding water flow, which has a certain guiding function for the optimization of tidal current energy generator group and protection for the marine environment and ecology.


2020 ◽  
Vol 1716 ◽  
pp. 012008
Author(s):  
P Vyshnavi ◽  
Nithya Venkatesan ◽  
A. Samad ◽  
E.J. Avital

2021 ◽  
Vol 9 (6) ◽  
pp. 574
Author(s):  
Zhuo Liu ◽  
Tianhao Tang ◽  
Azeddine Houari ◽  
Mohamed Machmoum ◽  
Mohamed Fouad Benkhoris

This paper firstly adopts a fault accommodation structure, a five-phase permanent magnet synchronous generator (PMSG) with trapezoidal back-electromagnetic forces, in order to enhance the fault tolerance of tidal current energy conversion systems. Meanwhile, a fault-tolerant control (FTC) method is proposed using multiple second-order generalized integrators (multiple SOGIs) to further improve the systematic fault tolerance. Then, additional harmonic disturbances from phase current or back-electromagnetic forces in original and Park’s frames are characterized under a single-phase open condition. Relying on a classical field-oriented vector control scheme, fault-tolerant composite controllers are then reconfigured using multiple SOGIs by compensating q-axis control commands. Finally, a real power-scale simulation setup with a gearless back-to-back tidal current energy conversion chain and a small power-scale laboratory prototype in machine side are established to comprehensively validate feasibility and fault tolerance of the proposed method. Simulation results show that the proposed method is able to suppress the main harmonic disturbances and maintain a satisfactory fault tolerance when third harmonic flux varies. Experimental results reveal that the proposed model-free fault-tolerant design is simple to implement, which contributes to better fault-tolerant behaviors, higher power quality and lower copper losses. The main advantage of the multiple SOGIs lies in convenient online implementation and efficient multi-harmonic extractions, without considering system’s model parameters. The proposed FTC design provides a model-free fault-tolerant solution to the energy harvested process of actual tidal current energy conversion systems under different working conditions.


Sign in / Sign up

Export Citation Format

Share Document