Underwater Technology The International Journal of the Society for Underwater
Latest Publications


TOTAL DOCUMENTS

493
(FIVE YEARS 34)

H-INDEX

15
(FIVE YEARS 1)

Published By Society For Underwater Technology

1756-0551, 1756-0543

Author(s):  
Gonzalo Bravo ◽  
Juan Pablo Livore ◽  
Gregorio Bigatti

Digital images are an excellent tool for divers to sample hard-bottom subtidal habitats as bottom time is limited and high-definition images can be collected quickly and accurately. The present paper describes a sampling protocol for benthic rocky reef communities using geo-referenced photoquadrats and tests the method over several rocky reefs of Atlantic Patagonia. This method was tested in two localities, separated by 100 km in a semi-enclosed gulf, covering a total of 5800 m of 11 rocky reefs using track roaming transects. The protocol is non-destructive, relatively low-cost and can adequately assess changes in marine habitats as rocky reefs. The implementation of artificial intelligence analysis using human expert training may reduce analysis time and increase the amount of data collected. The present study recommends this sampling methodology for programs aimed at monitoring changes in biodiversity.


Author(s):  
Pasqualino Corigliano

Industries have shown interest in the use of dissimilar metals to make corrosion-resistant materials combined with good mechanical properties in marine environments. Explosive welding can be considered a good method for joining dissimilar materials to prevent galvanic corrosion. The aim of the present study was to simulate the non-linear behaviour of a Ti6Al4V/Inconel 625 welded joint obtained by explosion welding from the values of the tensile ultimate strength and yielding strength of the parent materials. The present study compared the stress-strain curve from tensile loading obtained by the non-linear finite element analysis with the experimental stress-strain curve of a bimetallic joint. The applied method provides useful information for the development of models and the prediction of the structural behaviour of Ti6Al4V/Inconel 625 explosive welded joints.


Author(s):  
Biliana Cicin-Sain ◽  
David L. VanderZwaag ◽  
Miriam C. Balgos ◽  
Roland Rogers

Author(s):  
Gurmail S Paddan ◽  
Michael C Lower

The insertion losses of five neoprene diving hoods of varying thicknesses (2 mm–9 mm) were measured in one-third octave bands using a Kemar manikin in a diffuse broadband noise field. The insertion losses were measured in air for both dry and wet hoods. The insertion loss was calculated as the sound level in each frequency band measured with the hood, minus the corresponding sound level measured without the hood. The insertion losses were similar for both ears of the manikin. Both wet and dry hoods neither attenuated nor amplified sound below 250 Hz. Between 315 Hz–1250 Hz, the insertion loss of each hood was negative, displaying a broad resonance with a gain of 6–8 dB. In this frequency range the hood acts as a mass-spring system, resonating like a drum skin when stretched over the ears. Above 1000 Hz, the insertion loss increased with frequency (10 dB per octave), reaching a maximum of 5000 Hz–6000 Hz. Wetting each hood did not significantly affect the insertion loss; the 'drum-skin' resonance frequency was marginally lower with a wet hood, and insertion losses may be marginally greater between 1000 Hz– 10 000 Hz. The resonance frequency decreased with increasing thicknesses of hood, and the insertion loss at frequencies above the resonance increased with hood thickness.


Author(s):  
Xing-wei Zhen ◽  
Yue Han ◽  
Qiu-yang Duan ◽  
Jia-hao Wu ◽  
Yi Huang

The present paper describes a new offshore field development solution, Next Generation Subsea Production System (NextGen SPS), that aims to overcome the technical and commercial limitations of the current offshore field development concepts (dry tree or subsea tree) in ultra-deep water (more than 1500 m). The key developments of the NextGen SPS, including its main characteristics, stability characteristics and optimal design on the riser system, are presented and discussed. The series of studies demonstrates that the NextGen SPS offers improved technical and commercial performance, higher levels of safety, reduced interface complexity and improved development flexibility for field development in ultra-deep water.


Author(s):  
Kang Yongtian ◽  
Xiao Wensheng ◽  
Zhang Dagang ◽  
Zhang Liang ◽  
Zhou Chouyao ◽  
...  

The deepwater cable bending restrictor is an important protective device for risers, umbilicals and cables in offshore engineering, protecting cable structure by controlling minimum bending radius. Its mechanical properties are analysed based on the numerical analysis model and finite element analysis (FEM) of ø175. The sensitivity analysis of using quantity of bending restrictors is also performed to show the effect of the quantity on bending stiffness. A testing scheme of bending stiffness of the bending restrictor is then formulated based on its structure. From numerical analysis results through test simulation, the tolerance is less than 3 %, which verifies the reliability of the numerical analysis model. Performance of the bending restrictor and dynamic response are analysed according to environmental parameters that occur once per 100 years from offshore wind power farms and pipein-pipe models, respectively. The results show the bending restrictor can effectively protect cable structure, and the pipein-pipe model is suitable for calculating mechanical properties of interaction between the bending restrictor and cable.


Author(s):  
Jin Zhang ◽  
An Chen ◽  
Menglan Duan

In order to master the microscopic growth mechanism of natural gas hydrate, a series of experiments were carried out using a high-pressure hydrate flow loop. The microscopic physical information of the growth of hydrates in the emulsion system is captured by advanced microscopic equipment and the phenomena of the experiments show that: 1) not all water droplets instantaneously generate a hydrate shell, but only a few of the water droplets gradually generate a hydrate shell when reaching the conditions of the hydrate formation; and 2) the coalescence and shear do occur in the hydrate formation process, and the distribution of hydrate particle size has changed.


Sign in / Sign up

Export Citation Format

Share Document