An experimental study on the aerodynamic performance degradation of a wind turbine blade model induced by ice accretion process

2019 ◽  
Vol 133 ◽  
pp. 663-675 ◽  
Author(s):  
Linyue Gao ◽  
Yang Liu ◽  
Wenwu Zhou ◽  
Hui Hu
Author(s):  
Kousuke Nushi ◽  
Shingo Kasai ◽  
Kazuyuki Toda ◽  
Makoto Yamamoto ◽  
Makoto Iida ◽  
...  

The attention for a wind power-generator has been attracted as one of the solutions for the environmental problems. When a wind turbine is operated in winter, supercooled water droplets impinge on the blade surface, and as the result ice accretes around the leading edge. It is well known that the occurrence of ice accretion on the wind turbine blade can lead to the severe deterioration of aerodynamic performance. However, the experiment is difficult, because it is not easy to create repeatedly the accretion conditions in a laboratory. Therefore, CFD is expected as a useful tool to predict and investigate the phenomena. In the present study, we develop the ice accretion code, and apply it to the MEL wind turbine blade. From the computational results, the shape of the ice-accreted blade and the deterioration of aerodynamic performance are numerically investigated.


2013 ◽  
Vol 364 ◽  
pp. 102-106 ◽  
Author(s):  
Li Qun Zhou ◽  
Shuai Heng Xing ◽  
Yu Ping Li

Wind turbine blade model is analyzed based on finite element method. Research and comparison of blade natural frequencies is made in different rotational working conditions taking into account external factors such as the rotational inertia force. Also the relationship between the composite ply angle and natural frequency is analyzed. The result shows that the nature frequency of wind turbine blade is influence greatly by the stress stiffening effect for the blade rotation. And the nature frequency of wind turbine blade can be designed by adjusting the single fiber layer ply angle of blade.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3330 ◽  
Author(s):  
Jianhua Xu ◽  
Zhonghua Han ◽  
Xiaochao Yan ◽  
Wenping Song

A new airfoil family, called NPU-MWA (Northwestern Polytechnical University Multi-megawatt Wind-turbine A-series) airfoils, was designed to improve both aerodynamic and structural performance, with the outboard airfoils being designed at high design lift coefficient and high Reynolds number, and the inboard airfoils being designed as flat-back airfoils. This article aims to design a multi-megawatt wind turbine blade in order to demonstrate the advantages of the NPU-MWA airfoils in improving wind energy capturing and structural weight reduction. The distributions of chord length and twist angle for a 5 MW wind turbine blade are optimized by a Kriging surrogate model-based optimizer, with aerodynamic performance being evaluated by blade element-momentum theory. The Reynolds-averaged Navier–Stokes equations solver was used to validate the improvement in aerodynamic performance. Results show that compared with an existing NREL (National Renewable Energy Laboratory) 5 MW blade, the maximum power coefficient of the optimized NPU 5 MW blade is larger, and the chord lengths at all span-wise sections are dramatically smaller, resulting in a significant structural weight reduction (9%). It is shown that the NPU-MWA airfoils feature excellent aerodynamic and structural performance for the design of multi-megawatt wind turbine blades.


Sign in / Sign up

Export Citation Format

Share Document