Energy and exergy analysis of a parabolic trough collector using helically corrugated absorber tube

2020 ◽  
Vol 155 ◽  
pp. 735-747 ◽  
Author(s):  
Sanaz Akbarzadeh ◽  
Mohammad Sadegh Valipour
2015 ◽  
Vol 789-790 ◽  
pp. 391-397
Author(s):  
Ratha Z. Mathkor ◽  
Brian Agnew ◽  
Mohammed A. Al-Weshahi ◽  
Saleh Etaig

The paper presents a study of a thermal assessment of an Organic Rankine Cycle (ORC) energized by heat absorbed from a parabolic trough collector (PTC) located in Derna, Libya. Both the ORC and PTC are modeled using the IPSEpro software. The simulation results are used to evaluate the system performance using energy and exergy analysis. The study showed the PTC collector was the main contributor of the energy and exergy losses within the PTC system and the evaporator within in the ORC. At this specific weather conditions, the ORC was able to produce about 3 MW electrical powers from the powered PTC heat. Moreover, exergy efficiency of the PTC was 47.7 %, the heat engine was 23.3 % and for the overall system (PTC and ORC) was 11.1 %.


2018 ◽  
Vol 36 (1) ◽  
pp. 147-158 ◽  
Author(s):  
Omid Sadaghiyani ◽  
Mohsen Boubakran ◽  
Amir Hassanzadeh

2018 ◽  
Vol 43 (3) ◽  
pp. 211-220 ◽  
Author(s):  
Beemkumar Nagappan ◽  
Karthikeyan Alagu ◽  
Yuvarajan Devarajan ◽  
Dinesh Babu Munuswamy

AbstractThis study represents the exergy analysis of the evacuated tube parabolic trough collector and the cascaded latent heat storage system using multi-temperature phase change material (PCMs) during the charging process. The objective of the work is to control the losses and increase the efficiency of the system. The exergy analysis has been conducted on the basis of the first and second laws of thermodynamics in a parabolic trough collector with various mass flow rates of the heat transfer fluid (HTF). The overall variation of exergy efficiency of the collector with varying mass flow rate of the HTF is 5.9 %. The thermodynamic analysis of the cascaded latent heat storage system has been done during the charging process in which the PCM absorbs energy from the HTF and undergoes a phase transformation from the solid to the liquid state. The exergy analysis is conducted by varying the mass flow rate of the HTF in the storage system for both insulated and non-insulated systems. It is noticed that the variation of exergy stored for 5 and 10 liters per minute is 24.609 kW and 40.48 kW, respectively. It is concluded that the high range of energy and exergy stored in the system is achieved by the high flow rate of the HTF.


Author(s):  
Wisam H. Mousa ◽  
Fawziea M. Hussein ◽  
Johain J. Faraj

Latent heat storage using phase change materials (PCMs) is one of the most effective methods to store solar energy, and it can significantly reduce area for solar collectors. PCMs are isothermal in nature, and thus offer higher density energy storage and the ability to operate in a variable range of temperature conditions. In this paper, experimental study has been conducted to evaluate the effectiveness of the solar thermal storage system based on the energy and exergy analysis. Barium Hydroxide Octahydrate (BHO) and Sodium Acetate Trihydrate (SAT) were used as PCMs inside multi-capsule system arranged in series based on their melting temperatures. These two salts never being used together in a multi capsule solar storage system before. The capsules were charged by three water flow rates of 0.5 LPM, 1 LPM and 1.5 LPM that comes from a parabolic trough collector. The experimental results showed that the maximum energy and exergy storage of 139.38 kJ and 17.15 kJ, respectively were obtained from 1 LPM. In other hand, the maximum system energy and exergy efficiencies of 64.82 % and 14.99 %, respectively were obtained from the use of 1.5 LPM.


Sign in / Sign up

Export Citation Format

Share Document